Cauliflower centre detection and 3-dimensional tracking for robotic intrarow weeding

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Axel Willekens, Bert Callens, Francis Wyffels, Jan G. Pieters, Simon R. Cool
{"title":"Cauliflower centre detection and 3-dimensional tracking for robotic intrarow weeding","authors":"Axel Willekens, Bert Callens, Francis Wyffels, Jan G. Pieters, Simon R. Cool","doi":"10.1007/s11119-025-10227-3","DOIUrl":null,"url":null,"abstract":"<p>Mechanical weeding is an important part of integrated weed management. It destroys weeds between (interrow) and in (intrarow) crop rows. Preventing crop damage requires precise detection and tracking of the plants. In this work, a detection and tracking algorithm was developed and integrated on an intrarow hoeing prototype. The algorithm was developed and validated on 12 rows of 950 cauliflower plants. Therefore, a methodology was provided to automatically generate a label based on the crop plants’ Global Navigation Satellite System (GNSS) position during data collection with a robot platform. A CenterNet architecture was adjusted for plant centre detection by comparing different encoder networks and selecting the optimal hyperparameters. The monocular camera projection error of the plant centre detections in pixel to 3D coordinates was evaluated and used in a position- and velocity-based tracking algorithm to determine the timing for intrarow hoeing knife actuation. A dataset of 53k labelled images was created. The best CenterNet model resulted in an F1 score on the test set of 0.986 for detecting cauliflower centres. The position tracking had an average variation of 1.62 cm. Velocity tracking had a standard deviation of 0.008 <span>\\(\\mathrm {m\\,\\,s^{-1}}\\)</span> with respect to the robot’s operational target velocity. Overall, the entire integration showed effective actuation of the prototype in field conditions. Only one false positive detection occurred during operation in two test rows of 135 cauliflowers.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"55 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10227-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanical weeding is an important part of integrated weed management. It destroys weeds between (interrow) and in (intrarow) crop rows. Preventing crop damage requires precise detection and tracking of the plants. In this work, a detection and tracking algorithm was developed and integrated on an intrarow hoeing prototype. The algorithm was developed and validated on 12 rows of 950 cauliflower plants. Therefore, a methodology was provided to automatically generate a label based on the crop plants’ Global Navigation Satellite System (GNSS) position during data collection with a robot platform. A CenterNet architecture was adjusted for plant centre detection by comparing different encoder networks and selecting the optimal hyperparameters. The monocular camera projection error of the plant centre detections in pixel to 3D coordinates was evaluated and used in a position- and velocity-based tracking algorithm to determine the timing for intrarow hoeing knife actuation. A dataset of 53k labelled images was created. The best CenterNet model resulted in an F1 score on the test set of 0.986 for detecting cauliflower centres. The position tracking had an average variation of 1.62 cm. Velocity tracking had a standard deviation of 0.008 \(\mathrm {m\,\,s^{-1}}\) with respect to the robot’s operational target velocity. Overall, the entire integration showed effective actuation of the prototype in field conditions. Only one false positive detection occurred during operation in two test rows of 135 cauliflowers.

菜花中心检测与机器人腔内除草的三维跟踪
机械除草是杂草综合治理的重要组成部分。它可以消灭作物行间和行内的杂草。防止作物受损需要对植物进行精确的检测和跟踪。在此工作中,开发了一种检测和跟踪算法,并将其集成到一个内挖样机上。该算法在12行950株花椰菜上进行了开发和验证。为此,提出了一种基于农作物全球导航卫星系统(GNSS)位置在机器人平台数据采集过程中自动生成标签的方法。通过比较不同的编码器网络,选择最优的超参数,调整了植物中心检测的中心网络结构。评估了植物中心检测在像素到三维坐标的单目摄像机投影误差,并将其用于基于位置和速度的跟踪算法中,以确定狭缝内锄刀驱动的时间。创建了一个包含53k个标记图像的数据集。结果表明,CenterNet模型在花椰菜中心检测上的F1得分为0.986。位置跟踪的平均变化为1.62 cm。速度跟踪相对于机器人的操作目标速度的标准差为0.008 \(\mathrm {m\,\,s^{-1}}\)。总体而言,整个集成显示了原型机在现场条件下的有效驱动。在两排135株花椰菜的操作过程中,只发生了一次假阳性检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信