Macrofaunal biopores: Diversity and regeneration rates across diverse pedoclimatic conditions studied with repacked soil cores

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE
Charlotte Védère , Hanane Aroui Boukbida , Yvan Capowiez , Sougueh Cheik , Guillaume Coulouma , Rinh Pham Dinh , Séraphine Grellier , Claude Hammecker , Thierry Henry Des Tureaux , Ajay Harit , Jean Louis Janeau , Pascal Jouquet , Jean Luc Maeght , Pascal Podwojewski , Cornelia Rumpel , Stéphane Sammartino , Norbert Silvera , Siwaporn Siltecho , Lotfi Smaili , Bounsamay Soulileuth , Nicolas Bottinelli
{"title":"Macrofaunal biopores: Diversity and regeneration rates across diverse pedoclimatic conditions studied with repacked soil cores","authors":"Charlotte Védère ,&nbsp;Hanane Aroui Boukbida ,&nbsp;Yvan Capowiez ,&nbsp;Sougueh Cheik ,&nbsp;Guillaume Coulouma ,&nbsp;Rinh Pham Dinh ,&nbsp;Séraphine Grellier ,&nbsp;Claude Hammecker ,&nbsp;Thierry Henry Des Tureaux ,&nbsp;Ajay Harit ,&nbsp;Jean Louis Janeau ,&nbsp;Pascal Jouquet ,&nbsp;Jean Luc Maeght ,&nbsp;Pascal Podwojewski ,&nbsp;Cornelia Rumpel ,&nbsp;Stéphane Sammartino ,&nbsp;Norbert Silvera ,&nbsp;Siwaporn Siltecho ,&nbsp;Lotfi Smaili ,&nbsp;Bounsamay Soulileuth ,&nbsp;Nicolas Bottinelli","doi":"10.1016/j.geoderma.2025.117177","DOIUrl":null,"url":null,"abstract":"<div><div>It is well known that biopores are crucial for soil functioning. However, their dynamics is rarely studied and their origin with regards to the soil organisms involved is still hard to determine. In this study we investigated the diversity of biopores and their regeneration rates <em>in situ</em> in various pedoclimatic conditions. Our approach involved field incubation of repacked soil cores with lateral openings across nine study sites in five countries (France, Vietnam, India, Laos and Thailand). After 12 months, biopores were characterized by X-ray computed tomography and grouped according to their diameter, length and sphericity index using principal component analysis followed by K-means clustering. The regeneration dynamics of biopores was assessed by comparing those created after one year of incubation to the biopores determined in soil cores taken from the surrounding soils (assuming the latter are in a steady-state). Additionally, we examined the relationships between newly formed biopores and soil macrofauna taxa. Our results evidenced significant variability in biopore diameter (0.90 to 15.84 mm), length (1 to 1600 mm) and sphericity index (0.03 to 0.93). We propose 10 biopore groups allowing to distinguish most of the study sites. Complete regeneration of biopores after 12 months was achieved in seven out of nine sites. Three groups of biopores showed a positive relation with earthworm abundance (r values ranged from 0.69 to 0.90), whereas the other groups of biopores showed no association with any macrofauna taxa. We conclude that biopore formation can be assessed under field conditions with repacked soil cores, regardless the pedoclimatic conditions. However, the involvement of macrofauna other than earthworms in biopore formation still remains to be unraveled. To capture their contribution to biopore formation, improvements of the repacked soil core approach and complementary laboratory experiments were suggested.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"454 ","pages":"Article 117177"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125000151","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that biopores are crucial for soil functioning. However, their dynamics is rarely studied and their origin with regards to the soil organisms involved is still hard to determine. In this study we investigated the diversity of biopores and their regeneration rates in situ in various pedoclimatic conditions. Our approach involved field incubation of repacked soil cores with lateral openings across nine study sites in five countries (France, Vietnam, India, Laos and Thailand). After 12 months, biopores were characterized by X-ray computed tomography and grouped according to their diameter, length and sphericity index using principal component analysis followed by K-means clustering. The regeneration dynamics of biopores was assessed by comparing those created after one year of incubation to the biopores determined in soil cores taken from the surrounding soils (assuming the latter are in a steady-state). Additionally, we examined the relationships between newly formed biopores and soil macrofauna taxa. Our results evidenced significant variability in biopore diameter (0.90 to 15.84 mm), length (1 to 1600 mm) and sphericity index (0.03 to 0.93). We propose 10 biopore groups allowing to distinguish most of the study sites. Complete regeneration of biopores after 12 months was achieved in seven out of nine sites. Three groups of biopores showed a positive relation with earthworm abundance (r values ranged from 0.69 to 0.90), whereas the other groups of biopores showed no association with any macrofauna taxa. We conclude that biopore formation can be assessed under field conditions with repacked soil cores, regardless the pedoclimatic conditions. However, the involvement of macrofauna other than earthworms in biopore formation still remains to be unraveled. To capture their contribution to biopore formation, improvements of the repacked soil core approach and complementary laboratory experiments were suggested.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信