Crustivorous macro-arthropods regulate the microtopography and carbon dynamics of biological soil crusts

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE
Nevo Sagi , Amir Sagy , Vincent J.M.N.L. Felde , Dror Hawlena
{"title":"Crustivorous macro-arthropods regulate the microtopography and carbon dynamics of biological soil crusts","authors":"Nevo Sagi ,&nbsp;Amir Sagy ,&nbsp;Vincent J.M.N.L. Felde ,&nbsp;Dror Hawlena","doi":"10.1016/j.geoderma.2025.117193","DOIUrl":null,"url":null,"abstract":"<div><div>Biological soil crusts (biocrusts) play key roles in dryland ecosystem processes by mediating soil surface conditions. How consumption by macro-arthropods affects biocrust surface roughness and carbon cycling remains largely unknown. In two separate experiments, we addressed this knowledge gap by exposing biocrusts to varying levels of desert isopod crustivory (i.e. grazing intensity), and quantifying the consequences for microtopography, CO<sub>2</sub> efflux and carbon fixation. Biocrust surface roughness peaked under intermediate crustivory pressure, implying that varying levels of crustivory may have opposing consequences for ecosystem processes such as carbon cycling, water infiltration, runoff generation and soil erosion. However, crustivory had a monotonic negative effect on biocrust carbon cycling. Biocrust CO<sub>2</sub> efflux decreased with increasing crustivory, but recovered after several wetting events. Crustivory had a negative effect on biocrust C fixation, but only after the CO<sub>2</sub> efflux recovered to pre-crustivory levels. Our findings suggest that macro-crustivores may play a pivotal role in regulating biocrust functioning, introducing a whole new line of trophic research that may transform our understanding of ecosystems dynamics in drylands.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"454 ","pages":"Article 117193"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001670612500031X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Biological soil crusts (biocrusts) play key roles in dryland ecosystem processes by mediating soil surface conditions. How consumption by macro-arthropods affects biocrust surface roughness and carbon cycling remains largely unknown. In two separate experiments, we addressed this knowledge gap by exposing biocrusts to varying levels of desert isopod crustivory (i.e. grazing intensity), and quantifying the consequences for microtopography, CO2 efflux and carbon fixation. Biocrust surface roughness peaked under intermediate crustivory pressure, implying that varying levels of crustivory may have opposing consequences for ecosystem processes such as carbon cycling, water infiltration, runoff generation and soil erosion. However, crustivory had a monotonic negative effect on biocrust carbon cycling. Biocrust CO2 efflux decreased with increasing crustivory, but recovered after several wetting events. Crustivory had a negative effect on biocrust C fixation, but only after the CO2 efflux recovered to pre-crustivory levels. Our findings suggest that macro-crustivores may play a pivotal role in regulating biocrust functioning, introducing a whole new line of trophic research that may transform our understanding of ecosystems dynamics in drylands.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信