Tumor-Intrinsic SIRPA Drives Pyroptosis Evasion in Head and Neck Cancer

IF 5.7 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
A. Song, Q.-C. Yang, W.-D. Wang, S. Wang, H. Li, L. Wu, Z.-J. Sun
{"title":"Tumor-Intrinsic SIRPA Drives Pyroptosis Evasion in Head and Neck Cancer","authors":"A. Song, Q.-C. Yang, W.-D. Wang, S. Wang, H. Li, L. Wu, Z.-J. Sun","doi":"10.1177/00220345241305590","DOIUrl":null,"url":null,"abstract":"Pyroptosis, a gasdermin-mediated immunogenic cell death, has been shown to elicit adaptive antitumor immune responses, thereby augmenting the response to cancer immunotherapy when pyroptosis is therapeutically activated. However, despite increased gasdermin E (GSDME) expression, significant pyroptosis remains elusive in certain tumor types, and the underlying regulatory mechanisms are poorly understood. In this study, we observed high signal regulatory protein α1 (SIRPA) expression in head and neck squamous cell carcinoma (HNSCC) cells, a target in cancer immunotherapy. Intriguingly, SIRPA inhibition markedly augmented pyroptosis activity in tumor tissues and modulated tumor growth in a HNSCC mouse model. Subsequent investigations revealed that SIRPA knockout upregulated GSDME expression and potentiated cisplatin-induced pyroptosis in cancer cells. Integrative transcriptomics and metabolomics analysis suggested that the SIRPA knockout profoundly altered protein ubiquitination and augmented argininosuccinic acid levels in cancer cells. Specifically, we demonstrated that ubiquitin-specific peptidase 18 (USP18), a deubiquitinating enzyme, targets GSDME for deubiquitination and that USP18 knockdown suppressed cisplatin-induced pyroptosis. Notably, we found that succinylation of GSDME, which is mediated by succinyl-CoA, promotes GSDME cleavage without affecting caspase-3 activation. Further experiments indicated that SIRPA expression in tumor cells can decrease the antitumor efficacy of chemotherapy and immunotherapy in HNSCC mouse models. In summary, our findings reveal a novel mechanism of pyroptosis evasion in HNSCC, whereby tumor-intrinsic SIRPA enhances GSDME ubiquitylation and inhibits its succinylation. These insights suggest that inhibiting SIRPA expression may improve the efficacy of immunotherapy for HNSCC by inducing pyroptosis.","PeriodicalId":15596,"journal":{"name":"Journal of Dental Research","volume":"50 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dental Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345241305590","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Pyroptosis, a gasdermin-mediated immunogenic cell death, has been shown to elicit adaptive antitumor immune responses, thereby augmenting the response to cancer immunotherapy when pyroptosis is therapeutically activated. However, despite increased gasdermin E (GSDME) expression, significant pyroptosis remains elusive in certain tumor types, and the underlying regulatory mechanisms are poorly understood. In this study, we observed high signal regulatory protein α1 (SIRPA) expression in head and neck squamous cell carcinoma (HNSCC) cells, a target in cancer immunotherapy. Intriguingly, SIRPA inhibition markedly augmented pyroptosis activity in tumor tissues and modulated tumor growth in a HNSCC mouse model. Subsequent investigations revealed that SIRPA knockout upregulated GSDME expression and potentiated cisplatin-induced pyroptosis in cancer cells. Integrative transcriptomics and metabolomics analysis suggested that the SIRPA knockout profoundly altered protein ubiquitination and augmented argininosuccinic acid levels in cancer cells. Specifically, we demonstrated that ubiquitin-specific peptidase 18 (USP18), a deubiquitinating enzyme, targets GSDME for deubiquitination and that USP18 knockdown suppressed cisplatin-induced pyroptosis. Notably, we found that succinylation of GSDME, which is mediated by succinyl-CoA, promotes GSDME cleavage without affecting caspase-3 activation. Further experiments indicated that SIRPA expression in tumor cells can decrease the antitumor efficacy of chemotherapy and immunotherapy in HNSCC mouse models. In summary, our findings reveal a novel mechanism of pyroptosis evasion in HNSCC, whereby tumor-intrinsic SIRPA enhances GSDME ubiquitylation and inhibits its succinylation. These insights suggest that inhibiting SIRPA expression may improve the efficacy of immunotherapy for HNSCC by inducing pyroptosis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Dental Research
Journal of Dental Research 医学-牙科与口腔外科
CiteScore
15.30
自引率
3.90%
发文量
155
审稿时长
3-8 weeks
期刊介绍: The Journal of Dental Research (JDR) is a peer-reviewed scientific journal committed to sharing new knowledge and information on all sciences related to dentistry and the oral cavity, covering health and disease. With monthly publications, JDR ensures timely communication of the latest research to the oral and dental community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信