Explore the evolution of winter wheat production and its response to climate change under varying precipitation years in the Loess Plateau of China

IF 5.9 1区 农林科学 Q1 AGRONOMY
Donglin Wang , Yanbin Li , Binbin Zhang , Tengcong Jiang , Siyu Wu , Wenjie Wu , Yi Li , Jianqiang He , Deli Liu , Qinge Dong , Hao Feng
{"title":"Explore the evolution of winter wheat production and its response to climate change under varying precipitation years in the Loess Plateau of China","authors":"Donglin Wang ,&nbsp;Yanbin Li ,&nbsp;Binbin Zhang ,&nbsp;Tengcong Jiang ,&nbsp;Siyu Wu ,&nbsp;Wenjie Wu ,&nbsp;Yi Li ,&nbsp;Jianqiang He ,&nbsp;Deli Liu ,&nbsp;Qinge Dong ,&nbsp;Hao Feng","doi":"10.1016/j.agwat.2025.109335","DOIUrl":null,"url":null,"abstract":"<div><div>Change of the spatio-temporal distribution of precipitation poses a significant impact on agricultural production in rain-fed areas of the Loess Plateau. The adaptation process and mechanism of winter wheat production to annual precipitation pattern remain unclear. To clarify the transformation process of precipitation and the mechanism how it change the crop yield, particularly in the Loess Plateau where precipitation frequently alternates between dry and wet years, this study used the down-scaling global climate model (GCMs) data to simulate and predict the change trend of winter wheat yield from 1961 to 2100 under varying precipitation conditions in two future climate scenarios (SSP245 and SSP585), employing the APSIM model. In this study, parameters of APSIM-Wheat model were refined based on experimental data. Time series analysis showed that the winter wheat yields in the Loess Plateau exhibit periodic fluctuation, with a shorter fluctuation period under the SSP245 scenario compared to the SSP585 scenario, indicating an overall upward trend. Specifically, the average growth rate of winter wheat yield was 147.2 kg ha<sup>−1</sup> decade<sup>−1</sup> under SSP245 and 194 kg ha<sup>−1</sup> decade<sup>−1</sup> under SSP585. In addition, climate change could marginally enhance yield stability, albeit with observed regional variations. Notably, potential yield in the water-restricted areas such as Qinghai are significantly influenced by precipitation. The predicted potential yield across three precipitation types showed that wet years exhibited the least fluctuation, while the highest fluctuation were observed in dry years. In particular, the potential winter wheat yield without irrigation in wet years and dry years was 19.84 % higher under SSP245 scenario and 25.22 % higher under SSP585 scenario compared with current conditions. This study provides an important reference for formulating long term adaptation strategies to enhance the resilience of agricultural production against climate change.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"309 ","pages":"Article 109335"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377425000496","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Change of the spatio-temporal distribution of precipitation poses a significant impact on agricultural production in rain-fed areas of the Loess Plateau. The adaptation process and mechanism of winter wheat production to annual precipitation pattern remain unclear. To clarify the transformation process of precipitation and the mechanism how it change the crop yield, particularly in the Loess Plateau where precipitation frequently alternates between dry and wet years, this study used the down-scaling global climate model (GCMs) data to simulate and predict the change trend of winter wheat yield from 1961 to 2100 under varying precipitation conditions in two future climate scenarios (SSP245 and SSP585), employing the APSIM model. In this study, parameters of APSIM-Wheat model were refined based on experimental data. Time series analysis showed that the winter wheat yields in the Loess Plateau exhibit periodic fluctuation, with a shorter fluctuation period under the SSP245 scenario compared to the SSP585 scenario, indicating an overall upward trend. Specifically, the average growth rate of winter wheat yield was 147.2 kg ha−1 decade−1 under SSP245 and 194 kg ha−1 decade−1 under SSP585. In addition, climate change could marginally enhance yield stability, albeit with observed regional variations. Notably, potential yield in the water-restricted areas such as Qinghai are significantly influenced by precipitation. The predicted potential yield across three precipitation types showed that wet years exhibited the least fluctuation, while the highest fluctuation were observed in dry years. In particular, the potential winter wheat yield without irrigation in wet years and dry years was 19.84 % higher under SSP245 scenario and 25.22 % higher under SSP585 scenario compared with current conditions. This study provides an important reference for formulating long term adaptation strategies to enhance the resilience of agricultural production against climate change.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Agricultural Water Management
Agricultural Water Management 农林科学-农艺学
CiteScore
12.10
自引率
14.90%
发文量
648
审稿时长
4.9 months
期刊介绍: Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信