Diplatinum Single-Molecular Photocatalyst Capable of Driving Hydrogen Production from Water via Singlet-to-Triplet Transitions

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Toma Kunikubo, Raúl Castañeda, Muralee Murugesu, Jaclyn L. Brusso, Kosei Yamauchi, Hironobu Ozawa, Ken Sakai
{"title":"Diplatinum Single-Molecular Photocatalyst Capable of Driving Hydrogen Production from Water via Singlet-to-Triplet Transitions","authors":"Toma Kunikubo, Raúl Castañeda, Muralee Murugesu, Jaclyn L. Brusso, Kosei Yamauchi, Hironobu Ozawa, Ken Sakai","doi":"10.1002/anie.202418884","DOIUrl":null,"url":null,"abstract":"Solar-driven hydrogen production is regarded as one of the most ideal methods to achieve a sustainable society. In order to artificially establish efficient photosynthetic systems, efforts have been made to develop single-molecular photocatalysts capable of serving both as a photosensitizer (PS) and a catalyst (Cat) in hydrogen evolution reaction (HER). Although examples of such hybrid molecular photocatalysts have been demonstrated in the literature, their solar energy conversion efficiencies still remain quite limited. Here we demonstrate that a new dinuclear platinum(II) complex Pt2(bpia)Cl3 (bpia = bis(2-pyridylimidoyl)amido) serves as a single-molecular photocatalyst for HER with its performance significantly higher than that of the PtCl(tpy)- and PtCl2(bpy)-type photocatalysts developed in our group (tpy = 2,2′: 6′,2′′-terpyridine, bpy = 2,2′-bipyridine). The outstanding feature is that Pt2(bpia)Cl3 can produce H2 even by irradiating the lower-energy light above 500 nm, which is rationalized due to the direct population of triplet states via singlet-to-triplet transitions (i.e., S-T transitions) accelerated by the diplatinum core. To the best of our knowledge, Pt2(bpia)Cl3 is the first example of a single-molecular photocatalyst enabling hydrogen production from water via the S-T transitions using lower-energy light (> 580 nm).","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"20 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202418884","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven hydrogen production is regarded as one of the most ideal methods to achieve a sustainable society. In order to artificially establish efficient photosynthetic systems, efforts have been made to develop single-molecular photocatalysts capable of serving both as a photosensitizer (PS) and a catalyst (Cat) in hydrogen evolution reaction (HER). Although examples of such hybrid molecular photocatalysts have been demonstrated in the literature, their solar energy conversion efficiencies still remain quite limited. Here we demonstrate that a new dinuclear platinum(II) complex Pt2(bpia)Cl3 (bpia = bis(2-pyridylimidoyl)amido) serves as a single-molecular photocatalyst for HER with its performance significantly higher than that of the PtCl(tpy)- and PtCl2(bpy)-type photocatalysts developed in our group (tpy = 2,2′: 6′,2′′-terpyridine, bpy = 2,2′-bipyridine). The outstanding feature is that Pt2(bpia)Cl3 can produce H2 even by irradiating the lower-energy light above 500 nm, which is rationalized due to the direct population of triplet states via singlet-to-triplet transitions (i.e., S-T transitions) accelerated by the diplatinum core. To the best of our knowledge, Pt2(bpia)Cl3 is the first example of a single-molecular photocatalyst enabling hydrogen production from water via the S-T transitions using lower-energy light (> 580 nm).
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信