Deep Learning and Single-Molecule Localization Microscopy Reveal Nanoscopic Dynamics of DNA Entanglement Loci

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-02-04 DOI:10.1021/acsnano.4c15364
Maged F. Serag, Maram Abadi, Hajar Al-Zarah, Omar Ibrahim, Satoshi Habuchi
{"title":"Deep Learning and Single-Molecule Localization Microscopy Reveal Nanoscopic Dynamics of DNA Entanglement Loci","authors":"Maged F. Serag, Maram Abadi, Hajar Al-Zarah, Omar Ibrahim, Satoshi Habuchi","doi":"10.1021/acsnano.4c15364","DOIUrl":null,"url":null,"abstract":"Understanding molecular dynamics at the nanoscale remains challenging due to limitations in the temporal resolution of current imaging techniques. Deep learning integrated with Single-Molecule Localization Microscopy (SMLM) offers opportunities to probe these dynamics. Here, we leverage this integration to reveal entangled polymer dynamics at a fast time scale, which is relatively poorly understood at the single-molecule level. We used Lambda DNA as a model system and modeled their entanglement using the self-avoiding wormlike chain model, generated simulated localizations along the contours, and trained the deep learning algorithm on these simulated images to predict chain contours from sparse localization data. We found that the localizations are heterogeneously distributed along the contours. Our assessments indicated that chain entanglement creates local diffusion barriers for switching buffer molecules, affecting the photoswitching kinetics of fluorescent dyes conjugated to the DNA molecules at discrete DNA segments. Tracking these segments demonstrated stochastic and subdiffusive migration of the entanglement loci. Our approach provides direct visualization of nanoscale polymer dynamics and local molecular environments previously inaccessible to conventional imaging techniques. In addition, our results suggest that the switching kinetics of the fluorophores in SMLM can be used to characterize nanoscopic local environments.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"10 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15364","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding molecular dynamics at the nanoscale remains challenging due to limitations in the temporal resolution of current imaging techniques. Deep learning integrated with Single-Molecule Localization Microscopy (SMLM) offers opportunities to probe these dynamics. Here, we leverage this integration to reveal entangled polymer dynamics at a fast time scale, which is relatively poorly understood at the single-molecule level. We used Lambda DNA as a model system and modeled their entanglement using the self-avoiding wormlike chain model, generated simulated localizations along the contours, and trained the deep learning algorithm on these simulated images to predict chain contours from sparse localization data. We found that the localizations are heterogeneously distributed along the contours. Our assessments indicated that chain entanglement creates local diffusion barriers for switching buffer molecules, affecting the photoswitching kinetics of fluorescent dyes conjugated to the DNA molecules at discrete DNA segments. Tracking these segments demonstrated stochastic and subdiffusive migration of the entanglement loci. Our approach provides direct visualization of nanoscale polymer dynamics and local molecular environments previously inaccessible to conventional imaging techniques. In addition, our results suggest that the switching kinetics of the fluorophores in SMLM can be used to characterize nanoscopic local environments.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信