Mitigating Diffusion-Induced Intragranular Cracking in Single-Crystal LiNi0.5Mn1.5O4 via Extended Solid-Solution Behavior

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hyeonsol Shin, Agwu Ndukwe, Taemin Kim, Ji Hoon Lee, Guanchen Li, Hyeon Jeong Lee
{"title":"Mitigating Diffusion-Induced Intragranular Cracking in Single-Crystal LiNi0.5Mn1.5O4 via Extended Solid-Solution Behavior","authors":"Hyeonsol Shin, Agwu Ndukwe, Taemin Kim, Ji Hoon Lee, Guanchen Li, Hyeon Jeong Lee","doi":"10.1002/anie.202422726","DOIUrl":null,"url":null,"abstract":"Single-crystal cathodes have been investigated for their inherent resistance to intergranular cracking due to the absence of grain boundaries. However, these materials exhibit significant intergranular cracking, and the underlying mechanisms remain unclear. In this study, we examined the impact of extended solid-solution reactions on mitigating crack formation in magnesium-doped single-crystal LiNi0.5Mn1.5O4 (Mg-SC-LNMO) cathodes. With Mg acting as a structural pillar, the overall volume change was reduced by nearly 50%, the two-phase reaction was effectively suppressed, and the Li-ion diffusion coefficient was doubled. Continuum modeling based on experimental observations demonstrates that Mg doping significantly reduces the internal stress induced by lithium diffusion, thereby preserving the mechanical integrity of single-crystal LNMO. This improvement leads to enhanced electrochemical performance and durability. Our study provides new insights into mechanically robust single-crystal cathodes and proposes a design strategy to improve the durability of next-generation Li-ion batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"134 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422726","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-crystal cathodes have been investigated for their inherent resistance to intergranular cracking due to the absence of grain boundaries. However, these materials exhibit significant intergranular cracking, and the underlying mechanisms remain unclear. In this study, we examined the impact of extended solid-solution reactions on mitigating crack formation in magnesium-doped single-crystal LiNi0.5Mn1.5O4 (Mg-SC-LNMO) cathodes. With Mg acting as a structural pillar, the overall volume change was reduced by nearly 50%, the two-phase reaction was effectively suppressed, and the Li-ion diffusion coefficient was doubled. Continuum modeling based on experimental observations demonstrates that Mg doping significantly reduces the internal stress induced by lithium diffusion, thereby preserving the mechanical integrity of single-crystal LNMO. This improvement leads to enhanced electrochemical performance and durability. Our study provides new insights into mechanically robust single-crystal cathodes and proposes a design strategy to improve the durability of next-generation Li-ion batteries.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信