Tailoring Sodium Carboxymethylcellulose Binders for High-Voltage LiCoO2 via Thermal Pulse Sintering

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shiming Chen, Hengyao Zhu, Jiangxiao Li, Zu-Wei Yin, Taowen Chen, Xiangming Yao, Wenguang Zhao, Haoyu Xue, Xin Jiang, Yongsheng Li, Hengyu Ren, Jun Chen, Jun-Tao Li, Luyi Yang, Feng Pan
{"title":"Tailoring Sodium Carboxymethylcellulose Binders for High-Voltage LiCoO2 via Thermal Pulse Sintering","authors":"Shiming Chen, Hengyao Zhu, Jiangxiao Li, Zu-Wei Yin, Taowen Chen, Xiangming Yao, Wenguang Zhao, Haoyu Xue, Xin Jiang, Yongsheng Li, Hengyu Ren, Jun Chen, Jun-Tao Li, Luyi Yang, Feng Pan","doi":"10.1002/anie.202423796","DOIUrl":null,"url":null,"abstract":"Polyvinylidene fluoride (PVDF), as the commercial cathode binder for lithium-ion batteries, presents several practical challenges, including insufficient conductivity, weak adhesion to active materials, and the use of toxic N-methylpyrrolidone for slurry preparation. However, while most water-soluble binders can address the aforementioned issues, they fail to meet the requirements of high-voltage cathodes. In this work, we innovatively employed a thermal pulse sintering strategy to modify carboxymethyl cellulose sodium (CMC), enabling their application in 4.6 V LiCoO2 (93% capacity retention after 200 cycles). This strategy facilitates the decomposition of electrochemically active carboxyl groups, leading to ring opening reactions that generate numerous ether linkages (-C-O-C-) without introducing undesirable side effects on LiCoO2. The resulting components form additional charge carrier (i.e., Li+ and e-) pathways on the cathode surface. Additionally, the heating process also promotes uniform coating of the binder on the surface of LiCoO2, creating a protective layer that inhibits interfacial side reactions. Through proposing a scalable and economic manufacturing technology of multifunctional binder, this work enlightens the avenues for practical high-energy-density batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"25 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423796","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyvinylidene fluoride (PVDF), as the commercial cathode binder for lithium-ion batteries, presents several practical challenges, including insufficient conductivity, weak adhesion to active materials, and the use of toxic N-methylpyrrolidone for slurry preparation. However, while most water-soluble binders can address the aforementioned issues, they fail to meet the requirements of high-voltage cathodes. In this work, we innovatively employed a thermal pulse sintering strategy to modify carboxymethyl cellulose sodium (CMC), enabling their application in 4.6 V LiCoO2 (93% capacity retention after 200 cycles). This strategy facilitates the decomposition of electrochemically active carboxyl groups, leading to ring opening reactions that generate numerous ether linkages (-C-O-C-) without introducing undesirable side effects on LiCoO2. The resulting components form additional charge carrier (i.e., Li+ and e-) pathways on the cathode surface. Additionally, the heating process also promotes uniform coating of the binder on the surface of LiCoO2, creating a protective layer that inhibits interfacial side reactions. Through proposing a scalable and economic manufacturing technology of multifunctional binder, this work enlightens the avenues for practical high-energy-density batteries.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信