Enhanced Interfacial Electric Field of an S−Scheme Heterojunction by an Ultrasonication-Triggered Piezoelectric Effect for Sonocatalytic Therapy of Bacterial Infections

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Junwu Wei, Guiyuan Zhang, Shuang Xie, Zhanlin Zhang, Tianyu Gao, Mengxue Zhang, Xiaohong Li
{"title":"Enhanced Interfacial Electric Field of an S−Scheme Heterojunction by an Ultrasonication-Triggered Piezoelectric Effect for Sonocatalytic Therapy of Bacterial Infections","authors":"Junwu Wei, Guiyuan Zhang, Shuang Xie, Zhanlin Zhang, Tianyu Gao, Mengxue Zhang, Xiaohong Li","doi":"10.1002/anie.202500441","DOIUrl":null,"url":null,"abstract":"Sonodynamic therapy indicates advantages in combating antibiotics-resistant bacteria and deep tissue infections, but challenges remain in the less efficient charge transfer and reactive oxygen species (ROS) generation of sonosensitizers. Herein, an effective bactericidal strategy is developed through enhancing the interfacial electric field (IEF) of S-scheme heterojunctions by an ultrasonication-triggered piezoelectric effect. Hollow barium titanate (hBT) nanoparticles (NPs) were prepared through template etching, followed by in-situ assembly of tetrakis (4-carboxyphenyl)porphyrin (TCPP) with Zn2+ to obtain hBT@ZnTCPP. Both experimental and theoretical evidences support the notion that an IEF is generared from ZnTCPP to hBT. Compared to metalloporphyrins with Fe3+, Mn3+, Cu2+ and Ni2+, the stronger reduction of ZnTCPP induced by elevation of the orbital energy level of porphyrins after Zn2+ coordination leads to formation of S-scheme heterojunctions. The ultrasonication-activated polarization field enhances IEF and boosts energy band bending of hBT@ZnTCPP to promote electron-hole separations and ROS generations. Planktonic methicillin-resistant Staphylococcus aureus and their derived biofilms are completely destroyed within 5 min under ultrasonication through up-regulating genes of glucose catabolism and ion transportation and down-regulating genes of ribosomal synthesis and transmembrane transporter. Thus, this study demonstrates molecular-level modulation of energy levels for S-scheme heterojunction formation to achieve efficient sonocatalytic therapy of bacterial infections.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"66 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500441","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sonodynamic therapy indicates advantages in combating antibiotics-resistant bacteria and deep tissue infections, but challenges remain in the less efficient charge transfer and reactive oxygen species (ROS) generation of sonosensitizers. Herein, an effective bactericidal strategy is developed through enhancing the interfacial electric field (IEF) of S-scheme heterojunctions by an ultrasonication-triggered piezoelectric effect. Hollow barium titanate (hBT) nanoparticles (NPs) were prepared through template etching, followed by in-situ assembly of tetrakis (4-carboxyphenyl)porphyrin (TCPP) with Zn2+ to obtain hBT@ZnTCPP. Both experimental and theoretical evidences support the notion that an IEF is generared from ZnTCPP to hBT. Compared to metalloporphyrins with Fe3+, Mn3+, Cu2+ and Ni2+, the stronger reduction of ZnTCPP induced by elevation of the orbital energy level of porphyrins after Zn2+ coordination leads to formation of S-scheme heterojunctions. The ultrasonication-activated polarization field enhances IEF and boosts energy band bending of hBT@ZnTCPP to promote electron-hole separations and ROS generations. Planktonic methicillin-resistant Staphylococcus aureus and their derived biofilms are completely destroyed within 5 min under ultrasonication through up-regulating genes of glucose catabolism and ion transportation and down-regulating genes of ribosomal synthesis and transmembrane transporter. Thus, this study demonstrates molecular-level modulation of energy levels for S-scheme heterojunction formation to achieve efficient sonocatalytic therapy of bacterial infections.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信