Li-Ion Nanorobots with Enhanced Mobility for Fast-Ion Conducting Polymer Electrolytes

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mingshen Tu, Ziheng Wang, Qionghai Chen, Zaiping Guo, Feifei Cao, Huan Ye
{"title":"Li-Ion Nanorobots with Enhanced Mobility for Fast-Ion Conducting Polymer Electrolytes","authors":"Mingshen Tu, Ziheng Wang, Qionghai Chen, Zaiping Guo, Feifei Cao, Huan Ye","doi":"10.1039/d4ee05881j","DOIUrl":null,"url":null,"abstract":"Ion transport in known polymer electrolytes highly depends on the segmental motion of polymer chains and they have low ionic conductivity due to a single-ion transport pathway. Novel design paradigms are required to enhance the performance of polymer electrolytes beyond traditional systems. Here the role of an ultrasmall nanoparticle-assisted-migration is shown to significantly enhance the ionic conductivity of polyethylene oxide (PEO) polymer electrolytes. PEGylated nanoparticles with a size of much smaller than the gyration radius of the PEO chain diffuse rapidly within the PEO matrix and function as ion nanorobots for the transport of Li-ions. The ultrasmall nanoparticles also act as lubricants that further enhance the chain mobility of the bulk PEO backbone. The ultrasmall nanoparticle migration synergistically with accelerated segmental motion of the PEO form a dual-channel Li+ transport pathway, leading to an increase of the Li+ conductivity of the PEO-based electrolyte by three orders of magnitude. The electrolyte enables stable symmetric cell-cycling performance of > 1800 h and long-term charge/discharge stability for 980 cycles when used a Li|LiFePO4 full battery at 50 °C. This work highlights the potential of activating hopping of nanoparticles in composite polymer electrolytes to construct high-performance polymer-based all-solid-state battery.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"25 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee05881j","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ion transport in known polymer electrolytes highly depends on the segmental motion of polymer chains and they have low ionic conductivity due to a single-ion transport pathway. Novel design paradigms are required to enhance the performance of polymer electrolytes beyond traditional systems. Here the role of an ultrasmall nanoparticle-assisted-migration is shown to significantly enhance the ionic conductivity of polyethylene oxide (PEO) polymer electrolytes. PEGylated nanoparticles with a size of much smaller than the gyration radius of the PEO chain diffuse rapidly within the PEO matrix and function as ion nanorobots for the transport of Li-ions. The ultrasmall nanoparticles also act as lubricants that further enhance the chain mobility of the bulk PEO backbone. The ultrasmall nanoparticle migration synergistically with accelerated segmental motion of the PEO form a dual-channel Li+ transport pathway, leading to an increase of the Li+ conductivity of the PEO-based electrolyte by three orders of magnitude. The electrolyte enables stable symmetric cell-cycling performance of > 1800 h and long-term charge/discharge stability for 980 cycles when used a Li|LiFePO4 full battery at 50 °C. This work highlights the potential of activating hopping of nanoparticles in composite polymer electrolytes to construct high-performance polymer-based all-solid-state battery.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信