Repumping Mediated Emission Manipulation of Single-Photon Emitter by Optical Coexcitation

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qian Xu, Xiaodong Xu, Liang Zhao, Weiqi Li, Jianqun Yang, Xingji Li, Bo Gao
{"title":"Repumping Mediated Emission Manipulation of Single-Photon Emitter by Optical Coexcitation","authors":"Qian Xu, Xiaodong Xu, Liang Zhao, Weiqi Li, Jianqun Yang, Xingji Li, Bo Gao","doi":"10.1021/acsphotonics.4c02245","DOIUrl":null,"url":null,"abstract":"Single-photon emitters (SPEs) are essential for the advancement of quantum computing and information processing but face significant challenges. Current defect-based SPEs experience spectral diffusion and reduced photoluminescence efficiency due to electrons transitioning through dark states without photon emission. Additionally, these SPEs are highly sensitive to environmental fluctuations, affecting qubit stability. This study introduces a convenient optical coexcitation scheme to mitigate these issues in the SPE hosted in hexagonal boron nitride. This scheme repumps electrons from the metastable state to an intermediate state, enhancing their transition back to the excited state. This process significantly improves zero-phonon line emission while reducing phonon sideband intensity. Moreover, the coexcitation scheme increases tolerance to magnetic field and temperature variations. Long-duration photon count measurements demonstrate improved robustness of the SPE under this scheme. Overall, this research presents a simple strategy that enhances photon emission and stabilizes SPE performance against environmental disturbances, marking a notable advancement in quantum computing.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"39 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02245","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-photon emitters (SPEs) are essential for the advancement of quantum computing and information processing but face significant challenges. Current defect-based SPEs experience spectral diffusion and reduced photoluminescence efficiency due to electrons transitioning through dark states without photon emission. Additionally, these SPEs are highly sensitive to environmental fluctuations, affecting qubit stability. This study introduces a convenient optical coexcitation scheme to mitigate these issues in the SPE hosted in hexagonal boron nitride. This scheme repumps electrons from the metastable state to an intermediate state, enhancing their transition back to the excited state. This process significantly improves zero-phonon line emission while reducing phonon sideband intensity. Moreover, the coexcitation scheme increases tolerance to magnetic field and temperature variations. Long-duration photon count measurements demonstrate improved robustness of the SPE under this scheme. Overall, this research presents a simple strategy that enhances photon emission and stabilizes SPE performance against environmental disturbances, marking a notable advancement in quantum computing.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信