Photophysical Properties of Tandem Quantum Defects in Carbon Nanotubes

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
C. Alexander Schrage, Phillip Galonska, Justus T. Metternich, Sebastian Kruss
{"title":"Photophysical Properties of Tandem Quantum Defects in Carbon Nanotubes","authors":"C. Alexander Schrage, Phillip Galonska, Justus T. Metternich, Sebastian Kruss","doi":"10.1021/acs.jpclett.4c03476","DOIUrl":null,"url":null,"abstract":"Single-walled carbon nanotubes (SWCNTs) are versatile near-infrared (NIR) fluorophores that can be chemically functionalized to create biosensors. Numerous noncovalent approaches were developed to detect analytes, but these design concepts can be susceptible to nonspecific binding and reduced stability. In contrast, covalent modification of SWCNTs with quantum defects can be utilized to tune their fluorescence properties and enable new molecular recognition concepts. Here, we present and assess four different synthetic pathways/sequences to modify SWCNTs covalently with both sp<sup>3</sup> quantum defects and DNA-based guanine defects. We find that it is possible to create two defect types without disrupting the optical properties or chemical stability. Interestingly, the emission peak associated with sp<sup>3</sup> defects (E<sub>11</sub>*) shifts around 3 nm when combined with guanine defects, indicating a coupling between the two defect types. However, it is far lower than the red-shift in bandgap-related emission (E<sub>11</sub>) by guanine quantum defects (40 nm). We furthermore demonstrate that combinations of defects can be used for (bio)sensing. In summary, the combination of multiple quantum defect types in SWCNTs provides a platform for multifunctional biosensors and a new design space that can be explored.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"55 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03476","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single-walled carbon nanotubes (SWCNTs) are versatile near-infrared (NIR) fluorophores that can be chemically functionalized to create biosensors. Numerous noncovalent approaches were developed to detect analytes, but these design concepts can be susceptible to nonspecific binding and reduced stability. In contrast, covalent modification of SWCNTs with quantum defects can be utilized to tune their fluorescence properties and enable new molecular recognition concepts. Here, we present and assess four different synthetic pathways/sequences to modify SWCNTs covalently with both sp3 quantum defects and DNA-based guanine defects. We find that it is possible to create two defect types without disrupting the optical properties or chemical stability. Interestingly, the emission peak associated with sp3 defects (E11*) shifts around 3 nm when combined with guanine defects, indicating a coupling between the two defect types. However, it is far lower than the red-shift in bandgap-related emission (E11) by guanine quantum defects (40 nm). We furthermore demonstrate that combinations of defects can be used for (bio)sensing. In summary, the combination of multiple quantum defect types in SWCNTs provides a platform for multifunctional biosensors and a new design space that can be explored.

Abstract Image

碳纳米管串联量子缺陷的光物理性质
单壁碳纳米管(SWCNTs)是多功能近红外(NIR)荧光团,可以化学功能化以创建生物传感器。人们开发了许多非共价方法来检测分析物,但这些设计概念容易受到非特异性结合和稳定性降低的影响。相比之下,具有量子缺陷的SWCNTs的共价修饰可用于调整其荧光特性并实现新的分子识别概念。在这里,我们提出并评估了四种不同的合成途径/序列,以sp3量子缺陷和基于dna的鸟嘌呤缺陷共价修饰SWCNTs。我们发现可以在不破坏光学性质或化学稳定性的情况下创建两种缺陷类型。有趣的是,当与鸟嘌呤缺陷结合时,sp3缺陷(E11*)的发射峰漂移约3nm,表明两种缺陷类型之间存在耦合。然而,它远低于鸟嘌呤量子缺陷(40 nm)带隙相关发射(E11)的红移。我们进一步证明,缺陷的组合可以用于(生物)传感。综上所述,SWCNTs中多种量子缺陷类型的组合为多功能生物传感器提供了一个平台和一个新的设计空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信