Role of Water in the Stability and Efficiency of Ionic Liquid-Based Perovskite Solar Cells

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Yuqian Xie, Shenmiao Chen, Zihan Gu, Kui Xu, Lingfeng Chao, Yingdong Xia
{"title":"Role of Water in the Stability and Efficiency of Ionic Liquid-Based Perovskite Solar Cells","authors":"Yuqian Xie, Shenmiao Chen, Zihan Gu, Kui Xu, Lingfeng Chao, Yingdong Xia","doi":"10.1021/acs.jpclett.4c03629","DOIUrl":null,"url":null,"abstract":"The fabrication of perovskite solar cells (PSCs) in ambient air can accelerate their industrialization. However, moisture causes severe decomposition of the perovskite materials, limiting device efficiency. Here, we demonstrate that, compared to traditional <i>N</i>,<i>N</i>-dimethylformamide-based precursor solutions, the ionic liquid methylammonium acetate (MAAc) system forms a protective layer on the perovskite surface due to the C═O···Pb and N–H···I interactions between MAAc and PbI<sub>6</sub><sup>4–</sup>, which effectively prevents direct contact between the perovskite components and water. Moreover, we show that a certain level of humidity weakens the interactions between MAAc and PbI<sub>6</sub><sup>4–</sup>, promoting the crystallization process and resulting in films with fewer defects. PSCs based on MAAc achieved a power conversion efficiency of 20.73% under optimal water content conditions, and the unencapsulated devices maintained &gt;83% of their initial efficiency after &gt;1300 h in ambient air.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"9 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03629","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The fabrication of perovskite solar cells (PSCs) in ambient air can accelerate their industrialization. However, moisture causes severe decomposition of the perovskite materials, limiting device efficiency. Here, we demonstrate that, compared to traditional N,N-dimethylformamide-based precursor solutions, the ionic liquid methylammonium acetate (MAAc) system forms a protective layer on the perovskite surface due to the C═O···Pb and N–H···I interactions between MAAc and PbI64–, which effectively prevents direct contact between the perovskite components and water. Moreover, we show that a certain level of humidity weakens the interactions between MAAc and PbI64–, promoting the crystallization process and resulting in films with fewer defects. PSCs based on MAAc achieved a power conversion efficiency of 20.73% under optimal water content conditions, and the unencapsulated devices maintained >83% of their initial efficiency after >1300 h in ambient air.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信