{"title":"Role of Water in the Stability and Efficiency of Ionic Liquid-Based Perovskite Solar Cells","authors":"Yuqian Xie, Shenmiao Chen, Zihan Gu, Kui Xu, Lingfeng Chao, Yingdong Xia","doi":"10.1021/acs.jpclett.4c03629","DOIUrl":null,"url":null,"abstract":"The fabrication of perovskite solar cells (PSCs) in ambient air can accelerate their industrialization. However, moisture causes severe decomposition of the perovskite materials, limiting device efficiency. Here, we demonstrate that, compared to traditional <i>N</i>,<i>N</i>-dimethylformamide-based precursor solutions, the ionic liquid methylammonium acetate (MAAc) system forms a protective layer on the perovskite surface due to the C═O···Pb and N–H···I interactions between MAAc and PbI<sub>6</sub><sup>4–</sup>, which effectively prevents direct contact between the perovskite components and water. Moreover, we show that a certain level of humidity weakens the interactions between MAAc and PbI<sub>6</sub><sup>4–</sup>, promoting the crystallization process and resulting in films with fewer defects. PSCs based on MAAc achieved a power conversion efficiency of 20.73% under optimal water content conditions, and the unencapsulated devices maintained >83% of their initial efficiency after >1300 h in ambient air.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"9 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03629","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The fabrication of perovskite solar cells (PSCs) in ambient air can accelerate their industrialization. However, moisture causes severe decomposition of the perovskite materials, limiting device efficiency. Here, we demonstrate that, compared to traditional N,N-dimethylformamide-based precursor solutions, the ionic liquid methylammonium acetate (MAAc) system forms a protective layer on the perovskite surface due to the C═O···Pb and N–H···I interactions between MAAc and PbI64–, which effectively prevents direct contact between the perovskite components and water. Moreover, we show that a certain level of humidity weakens the interactions between MAAc and PbI64–, promoting the crystallization process and resulting in films with fewer defects. PSCs based on MAAc achieved a power conversion efficiency of 20.73% under optimal water content conditions, and the unencapsulated devices maintained >83% of their initial efficiency after >1300 h in ambient air.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.