{"title":"Self-referenced Digital Spectral Chromatic Local Surface Plasmon Resonance in Ultrasensitive Severe Sepsis Interleukin-6 Detection","authors":"Ting-Wei Chang, Ting-Hao Chuang, Sheng-Hann Wang, Wing Kiu Yeung, Pei-Kuen Wei","doi":"10.1021/acssensors.4c03067","DOIUrl":null,"url":null,"abstract":"Clinical monitoring of cytokines, such as interleukin-6 (IL-6), enables a timely diagnosis and can significantly improve patient prognosis. In this study, we developed a rapid, label-free, ultrasensitive, and low matrix-effect method called chromatic digital nanoplasmon-metry (cDiNM) to detect IL-6 in human blood plasma. Utilizing a multiple filter configuration, two nonadjacent specific transmission wavelength bands are extracted. One is centered within the full-width-at-half-maximum (fwhm) range where the local surface plasmon resonance (LSPR) response of the 80 nm gold nanoparticles (AuNPs) is strongest, while the other band is narrowed and blue-shifted from the peak to a region with minor intensity change. Scattering images of AuNPs passing through these two bands are then captured simultaneously and independently via the red and green channels of a color scientific complementary metal–oxide–semiconductor (sCMOS) camera. This configuration allows every AuNPs’ spectral chromatic image contrast to be a self-referenced subtractive analysis LSPR and facilitates evaluation of their changes induced by the IL-6 binding across numerous individual AuNPs. This method achieves IL-6 detection in blood plasma within 45 min, requiring only 0.5 mL of a 10-fold diluted, label-free sample, with a limit of detection and quantification (LOD and LOQ) of less than 19.2 and 87.8 fg/mL, respectively, and a recovery rate of 96%. In summary, cDiNM provides rapid and accurate IL-6 monitoring with promising potential for clinical application in sepsis patient care.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"134 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03067","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical monitoring of cytokines, such as interleukin-6 (IL-6), enables a timely diagnosis and can significantly improve patient prognosis. In this study, we developed a rapid, label-free, ultrasensitive, and low matrix-effect method called chromatic digital nanoplasmon-metry (cDiNM) to detect IL-6 in human blood plasma. Utilizing a multiple filter configuration, two nonadjacent specific transmission wavelength bands are extracted. One is centered within the full-width-at-half-maximum (fwhm) range where the local surface plasmon resonance (LSPR) response of the 80 nm gold nanoparticles (AuNPs) is strongest, while the other band is narrowed and blue-shifted from the peak to a region with minor intensity change. Scattering images of AuNPs passing through these two bands are then captured simultaneously and independently via the red and green channels of a color scientific complementary metal–oxide–semiconductor (sCMOS) camera. This configuration allows every AuNPs’ spectral chromatic image contrast to be a self-referenced subtractive analysis LSPR and facilitates evaluation of their changes induced by the IL-6 binding across numerous individual AuNPs. This method achieves IL-6 detection in blood plasma within 45 min, requiring only 0.5 mL of a 10-fold diluted, label-free sample, with a limit of detection and quantification (LOD and LOQ) of less than 19.2 and 87.8 fg/mL, respectively, and a recovery rate of 96%. In summary, cDiNM provides rapid and accurate IL-6 monitoring with promising potential for clinical application in sepsis patient care.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.