{"title":"Dynamical Landauer Principle: Quantifying Information Transmission by Thermodynamics","authors":"Chung-Yun Hsieh","doi":"10.1103/physrevlett.134.050404","DOIUrl":null,"url":null,"abstract":"Energy transfer and information transmission are two fundamental aspects of nature. They are seemingly unrelated, while recent findings suggest that a deep connection between them is to be discovered. This amounts to asking: Can we phrase the processes of transmitting classical bits equivalently as specific energy-transmitting tasks, thereby uncovering foundational links between them? We answer this question positively by showing that, for a broad class of classical communication tasks, a quantum dynamics’ ability to transmit n</a:mi></a:mrow></a:math> bits of classical information is equivalent to its ability to transmit <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>n</c:mi></c:math> units of energy in a thermodynamic task. This finding not only provides an analytical correspondence between information transmission and energy extraction tasks, but also quantifies classical communication by thermodynamics. Furthermore, our findings uncover the dynamical version of Landauer’s principle, showing the strong link between transmitting information and energy. In the asymptotic regime, our results further provide thermodynamic meanings for the well-known Holevo-Schumacher-Westmoreland theorem in quantum communication theory. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"7 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.050404","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Energy transfer and information transmission are two fundamental aspects of nature. They are seemingly unrelated, while recent findings suggest that a deep connection between them is to be discovered. This amounts to asking: Can we phrase the processes of transmitting classical bits equivalently as specific energy-transmitting tasks, thereby uncovering foundational links between them? We answer this question positively by showing that, for a broad class of classical communication tasks, a quantum dynamics’ ability to transmit n bits of classical information is equivalent to its ability to transmit n units of energy in a thermodynamic task. This finding not only provides an analytical correspondence between information transmission and energy extraction tasks, but also quantifies classical communication by thermodynamics. Furthermore, our findings uncover the dynamical version of Landauer’s principle, showing the strong link between transmitting information and energy. In the asymptotic regime, our results further provide thermodynamic meanings for the well-known Holevo-Schumacher-Westmoreland theorem in quantum communication theory. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks