Positively Charged Nanoplastics Destruct the Structure of the PCK1 Enzyme, Promote the Aerobic Gycolysis Pathway, and Induce Hepatic Tumor Risks

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yudi Wang, Jiaoyue Cong, Xiaoyan Kong, Changqing Zhang, Jing Wang, Lei Wang, Zhenghua Duan
{"title":"Positively Charged Nanoplastics Destruct the Structure of the PCK1 Enzyme, Promote the Aerobic Gycolysis Pathway, and Induce Hepatic Tumor Risks","authors":"Yudi Wang, Jiaoyue Cong, Xiaoyan Kong, Changqing Zhang, Jing Wang, Lei Wang, Zhenghua Duan","doi":"10.1021/acs.est.4c13165","DOIUrl":null,"url":null,"abstract":"The production and weathering processes of nanoparticles (NPs) introduce charged functional groups on their surface. Previous studies have found that the surface charge properties of NPs play a critical role in their toxic effects and the mechanisms are generally attributed to their different accumulations and transmembrane potentials. Currently, we still lack sufficient knowledge about effects, owing to the unique structures of these polymers. In this study, positively charged NPs (PS-NH<sub>2</sub>, 50 nm) at 0.05–0.5 μg mL<sup>–1</sup> promoted the proliferation of hepatic tumors in oncogenic <i>Kras</i><sup><i>G12V</i></sup> zebrafish larvae and they also increased the viability of human hepatocellular carcinoma cells, whereas negatively charged NPs (PS-COOH, 50 nm) did not. We present evidence indicating that the potential carcinogenicity of PS-NH<sub>2</sub> is related to the special polymer–molecular interactions caused by its positive surface charge. The affinity of PS-COOH chains for peptides typically enhances enzyme stability and upregulates its expression. However, PS-NH<sub>2</sub> strongly competes with hydrogen bonds of the first rate-limiting enzyme PCK1 in gluconeogenesis, thus downregulating the expression of PCK1 and promoting the aerobic glycolysis pathway, which most tumor cells prefer. This study indicates that positive-charge modified NPs in the environment may bring additional carcinogenic risks.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"55 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c13165","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The production and weathering processes of nanoparticles (NPs) introduce charged functional groups on their surface. Previous studies have found that the surface charge properties of NPs play a critical role in their toxic effects and the mechanisms are generally attributed to their different accumulations and transmembrane potentials. Currently, we still lack sufficient knowledge about effects, owing to the unique structures of these polymers. In this study, positively charged NPs (PS-NH2, 50 nm) at 0.05–0.5 μg mL–1 promoted the proliferation of hepatic tumors in oncogenic KrasG12V zebrafish larvae and they also increased the viability of human hepatocellular carcinoma cells, whereas negatively charged NPs (PS-COOH, 50 nm) did not. We present evidence indicating that the potential carcinogenicity of PS-NH2 is related to the special polymer–molecular interactions caused by its positive surface charge. The affinity of PS-COOH chains for peptides typically enhances enzyme stability and upregulates its expression. However, PS-NH2 strongly competes with hydrogen bonds of the first rate-limiting enzyme PCK1 in gluconeogenesis, thus downregulating the expression of PCK1 and promoting the aerobic glycolysis pathway, which most tumor cells prefer. This study indicates that positive-charge modified NPs in the environment may bring additional carcinogenic risks.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信