Yang Xu, Shujing Lv, Xiang Li, Chuanjia Zhai, Yulian Shi, Xuejiao Li, Zhiyang Feng, Gan Luo, Ying Wang, Xiaoyan Gao
{"title":"Photoaffinity probe-enabled discovery of sennoside A reductase in <i>Bifidobacterium pseudocatenulatum</i>.","authors":"Yang Xu, Shujing Lv, Xiang Li, Chuanjia Zhai, Yulian Shi, Xuejiao Li, Zhiyang Feng, Gan Luo, Ying Wang, Xiaoyan Gao","doi":"10.1016/j.jpha.2024.101108","DOIUrl":null,"url":null,"abstract":"<p><p>Sennoside A (SA), a typical prodrug, exerts its laxative effect only after its transformation into rheinanthrone catalyzed by gut microbial hydrolases and reductases. Hydrolases have been identified, but reductases remain unknown. By linking a photoreactive group to the SA scaffold, we synthesized a photoaffinity probe to covalently label SA reductases and identified SA reductases using activity-based protein profiling (ABPP). From lysates of an active strain, <i>Bifidobacterium pseudocatenulatum</i> (<i>B</i>. <i>pseudocatenulatum</i>), 397 proteins were enriched and subsequently identified using mass spectrometry (MS). Among these proteins, chromate reductase/nicotinamide adenine dinucleotide (NADH) phosphate (NADPH)-dependent flavin mononucleotide (FMN) reductase/oxygen-insensitive NADPH nitroreductase (nfrA) was identified as a potent SA reductase through further bioinformatic analysis and The Universal Protein Resource (UniProt) database screening. We also determined that recombinant nfrA could reduce SA. Our study contributes to further illuminating mechanisms of SA transformation to rheinanthrone and simultaneously offers an effective method to identify gut bacterial reductases.</p>","PeriodicalId":94338,"journal":{"name":"Journal of pharmaceutical analysis","volume":"15 1","pages":"101108"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11788863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jpha.2024.101108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sennoside A (SA), a typical prodrug, exerts its laxative effect only after its transformation into rheinanthrone catalyzed by gut microbial hydrolases and reductases. Hydrolases have been identified, but reductases remain unknown. By linking a photoreactive group to the SA scaffold, we synthesized a photoaffinity probe to covalently label SA reductases and identified SA reductases using activity-based protein profiling (ABPP). From lysates of an active strain, Bifidobacterium pseudocatenulatum (B. pseudocatenulatum), 397 proteins were enriched and subsequently identified using mass spectrometry (MS). Among these proteins, chromate reductase/nicotinamide adenine dinucleotide (NADH) phosphate (NADPH)-dependent flavin mononucleotide (FMN) reductase/oxygen-insensitive NADPH nitroreductase (nfrA) was identified as a potent SA reductase through further bioinformatic analysis and The Universal Protein Resource (UniProt) database screening. We also determined that recombinant nfrA could reduce SA. Our study contributes to further illuminating mechanisms of SA transformation to rheinanthrone and simultaneously offers an effective method to identify gut bacterial reductases.
Sennoside A (SA)是一种典型的前药,需经肠道微生物水解酶和还原酶催化转化为莱茵王素才能发挥其通便作用。水解酶已被发现,但还原酶仍然未知。通过将一个光反应基团连接到SA支架上,我们合成了一个光亲和探针来共价标记SA还原酶,并使用基于活性的蛋白质谱分析(ABPP)鉴定SA还原酶。从一株活性菌株假atenulatum双歧杆菌(B. pseudocatenulatum)的裂解物中富集了397个蛋白,随后使用质谱(MS)鉴定了这些蛋白。在这些蛋白中,通过进一步的生物信息学分析和通用蛋白资源(UniProt)数据库筛选,铬酸盐还原酶/烟酰胺腺嘌呤二核苷酸(NADH)磷酸(NADPH)依赖的黄素单核苷酸(FMN)还原酶/氧不敏感的NADPH硝基还原酶(nfrA)被确定为有效的SA还原酶。我们还发现重组nfrA可以降低SA。我们的研究有助于进一步阐明SA转化为莱茵王座的机制,同时为鉴定肠道细菌还原酶提供了有效的方法。