Multi-scale computational modeling to identify novel chemical scaffolds as trehalose-6-phosphate phosphatase inhibitors to combat Burkholderia pseudomallei.

In silico pharmacology Pub Date : 2025-02-01 eCollection Date: 2025-01-01 DOI:10.1007/s40203-025-00309-5
Sara Noor, Mohammad Abdullah Aljasir, Maryam Bashir, Kalsoom Khan, Sajjad Ahmad, Syed Ainul Abideen, Saifullah Khan, Farhan Siddique, Hamza Ahmad, Khudija Ghani, Madiha Iqbal, Muhammad Irfan, Abbas Khan, Dong-Qing Wei
{"title":"Multi-scale computational modeling to identify novel chemical scaffolds as trehalose-6-phosphate phosphatase inhibitors to combat <i>Burkholderia pseudomallei</i>.","authors":"Sara Noor, Mohammad Abdullah Aljasir, Maryam Bashir, Kalsoom Khan, Sajjad Ahmad, Syed Ainul Abideen, Saifullah Khan, Farhan Siddique, Hamza Ahmad, Khudija Ghani, Madiha Iqbal, Muhammad Irfan, Abbas Khan, Dong-Qing Wei","doi":"10.1007/s40203-025-00309-5","DOIUrl":null,"url":null,"abstract":"<p><p><i>Burkholderia pseudomallei</i> causes melioidosis, a deadly infection having high fatality rates (20-50%) and antibiotic resistance, however, there's no effective drug or vaccine available. Trehalose is a vital sugar for <i>B. pseudomallei</i> which influences the pathogen resilience and pathogenicity. This proposed computational strategy focuses on developing novel drugs against Trehalose-6-phosphate Phosphatase (TPP) to combat infections. This study found three novel drugs from Asinex, Zinc, Chembridge, and Drugbank databases through a comprehensive structure-based virtual screening. The process screened the top three compounds: BDG_34042863, BDF_33738612, and DB00139 along with control (2-methyl-6-phenoxytetrahydro-2 H-pyran-3,4,5-triol) with a binding energy score of -8.8 kcal/mol, -8.4 kcal/mol, and - 7.7 kcal/mol, -6.4 kcal/mol respectively. In a molecular dynamics simulation, the Ligand-protein complexes demonstrated substantial non-covalent interactions as well as a stable docked intermolecular binding conformation. Throughout the MDS (molecular dynamic simulation) period, the studied compounds showed stable consistent interactions; there were no noticeable changes in the interactions or binding mode. The BDG_34042863, BDF_33738612, and DB00139 had a mean deviation of 4.04, 7.18, and 7.10 measured in Å, respectively. In addition, the simulation trajectories of complexes underwent MM/GBSA analysis, which revealed binding affinity scores of -33.39, -41.1, -49.16, and - 41.29 measured in kcal/mol for the control, BDG_34042863, BDF_33738612, and DB00139, respectively. According to DFT Analysis, BDF_33738612 showed the smallest energy gap (0.46 eV), indicating high reactivity, while DB00139 showed the largest energy gap (5.66 eV), illustrating good kinetic stability compared to the control. The compounds exhibit notable differences in reactivity and stability levels as their HOMO-1 to LUMO + 1 and HOMO-2 to LUMO + 2 orbitals have greater energy gaps, ranging from 5.06 eV to 6.69 eV and 5.66 eV to 7.09 eV, respectively. The compounds also had favorable pharmacokinetic characteristics and were categorized as druglike. Among the selected compounds, BDF_33738612 demonstrated the most promising findings followed by BDG_34042863 and DB00139. The compounds may be employed in an experimental study to examine their anti-TPP activity against <i>B. pseudomallei</i>.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-025-00309-5.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"13 1","pages":"21"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-025-00309-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Burkholderia pseudomallei causes melioidosis, a deadly infection having high fatality rates (20-50%) and antibiotic resistance, however, there's no effective drug or vaccine available. Trehalose is a vital sugar for B. pseudomallei which influences the pathogen resilience and pathogenicity. This proposed computational strategy focuses on developing novel drugs against Trehalose-6-phosphate Phosphatase (TPP) to combat infections. This study found three novel drugs from Asinex, Zinc, Chembridge, and Drugbank databases through a comprehensive structure-based virtual screening. The process screened the top three compounds: BDG_34042863, BDF_33738612, and DB00139 along with control (2-methyl-6-phenoxytetrahydro-2 H-pyran-3,4,5-triol) with a binding energy score of -8.8 kcal/mol, -8.4 kcal/mol, and - 7.7 kcal/mol, -6.4 kcal/mol respectively. In a molecular dynamics simulation, the Ligand-protein complexes demonstrated substantial non-covalent interactions as well as a stable docked intermolecular binding conformation. Throughout the MDS (molecular dynamic simulation) period, the studied compounds showed stable consistent interactions; there were no noticeable changes in the interactions or binding mode. The BDG_34042863, BDF_33738612, and DB00139 had a mean deviation of 4.04, 7.18, and 7.10 measured in Å, respectively. In addition, the simulation trajectories of complexes underwent MM/GBSA analysis, which revealed binding affinity scores of -33.39, -41.1, -49.16, and - 41.29 measured in kcal/mol for the control, BDG_34042863, BDF_33738612, and DB00139, respectively. According to DFT Analysis, BDF_33738612 showed the smallest energy gap (0.46 eV), indicating high reactivity, while DB00139 showed the largest energy gap (5.66 eV), illustrating good kinetic stability compared to the control. The compounds exhibit notable differences in reactivity and stability levels as their HOMO-1 to LUMO + 1 and HOMO-2 to LUMO + 2 orbitals have greater energy gaps, ranging from 5.06 eV to 6.69 eV and 5.66 eV to 7.09 eV, respectively. The compounds also had favorable pharmacokinetic characteristics and were categorized as druglike. Among the selected compounds, BDF_33738612 demonstrated the most promising findings followed by BDG_34042863 and DB00139. The compounds may be employed in an experimental study to examine their anti-TPP activity against B. pseudomallei.

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-025-00309-5.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信