Characterization of microbiota signatures in Iberian pig strains using machine learning algorithms.

IF 4.9 Q1 MICROBIOLOGY
Lamiae Azouggagh, Noelia Ibáñez-Escriche, Marina Martínez-Álvaro, Luis Varona, Joaquim Casellas, Sara Negro, Cristina Casto-Rebollo
{"title":"Characterization of microbiota signatures in Iberian pig strains using machine learning algorithms.","authors":"Lamiae Azouggagh, Noelia Ibáñez-Escriche, Marina Martínez-Álvaro, Luis Varona, Joaquim Casellas, Sara Negro, Cristina Casto-Rebollo","doi":"10.1186/s42523-025-00378-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There is a growing interest in uncovering the factors that shape microbiome composition due to its association with complex phenotypic traits in livestock. Host genetic variation is increasingly recognized as a major factor influencing the microbiome. The Iberian pig breed, known for its high-quality meat products, includes various strains with recognized genetic and phenotypic variability. However, despite the microbiome's known impact on pigs' productive phenotypes such as meat quality traits, comparative analyses of gut microbial composition across Iberian pig strains are lacking. This study aims to explore the gut microbiota of two Iberian pig strains, Entrepelado (n = 74) and Retinto (n = 63), and their reciprocal crosses (n = 100), using machine learning (ML) models to identify key microbial taxa relevant for distinguishing their genetic backgrounds, which holds potential application in the pig industry. Nine ML algorithms, including tree-based, kernel-based, probabilistic, and linear algorithms, were used.</p><p><strong>Results: </strong>Beta diversity analysis on 16 S rRNA microbiome data revealed compositional divergence among genetic, age and batch groups. ML models exploring maternal, paternal and heterosis effects showed varying levels of classification performance, with the paternal effect scenario being the best, achieving a mean Area Under the ROC curve (AUROC) of 0.74 using the Catboost (CB) algorithm. However, the most genetically distant animals, the purebreds, were more easily discriminated using the ML models. The classification of the two Iberian strains reached the highest mean AUROC of 0.83 using Support Vector Machine (SVM) model. The most relevant genera in this classification performance were Acetitomaculum, Butyricicoccus and Limosilactobacillus. All of which exhibited a relevant differential abundance between purebred animals using a Bayesian linear model.</p><p><strong>Conclusions: </strong>The study confirms variations in gut microbiota among Iberian pig strains and their crosses, influenced by genetic and non-genetic factors. ML models, particularly CB and RF, as well as SVM in certain scenarios, combined with a feature selection process, effectively classified genetic groups based on microbiome data and identified key microbial taxa. These taxa were linked to short-chain fatty acids production and lipid metabolism, suggesting microbial composition differences may contribute to variations in fat-related traits among Iberian genetic groups.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"13"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789298/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-025-00378-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: There is a growing interest in uncovering the factors that shape microbiome composition due to its association with complex phenotypic traits in livestock. Host genetic variation is increasingly recognized as a major factor influencing the microbiome. The Iberian pig breed, known for its high-quality meat products, includes various strains with recognized genetic and phenotypic variability. However, despite the microbiome's known impact on pigs' productive phenotypes such as meat quality traits, comparative analyses of gut microbial composition across Iberian pig strains are lacking. This study aims to explore the gut microbiota of two Iberian pig strains, Entrepelado (n = 74) and Retinto (n = 63), and their reciprocal crosses (n = 100), using machine learning (ML) models to identify key microbial taxa relevant for distinguishing their genetic backgrounds, which holds potential application in the pig industry. Nine ML algorithms, including tree-based, kernel-based, probabilistic, and linear algorithms, were used.

Results: Beta diversity analysis on 16 S rRNA microbiome data revealed compositional divergence among genetic, age and batch groups. ML models exploring maternal, paternal and heterosis effects showed varying levels of classification performance, with the paternal effect scenario being the best, achieving a mean Area Under the ROC curve (AUROC) of 0.74 using the Catboost (CB) algorithm. However, the most genetically distant animals, the purebreds, were more easily discriminated using the ML models. The classification of the two Iberian strains reached the highest mean AUROC of 0.83 using Support Vector Machine (SVM) model. The most relevant genera in this classification performance were Acetitomaculum, Butyricicoccus and Limosilactobacillus. All of which exhibited a relevant differential abundance between purebred animals using a Bayesian linear model.

Conclusions: The study confirms variations in gut microbiota among Iberian pig strains and their crosses, influenced by genetic and non-genetic factors. ML models, particularly CB and RF, as well as SVM in certain scenarios, combined with a feature selection process, effectively classified genetic groups based on microbiome data and identified key microbial taxa. These taxa were linked to short-chain fatty acids production and lipid metabolism, suggesting microbial composition differences may contribute to variations in fat-related traits among Iberian genetic groups.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信