Genomic analysis of antimicrobial resistant Escherichia coli isolated from manure and manured agricultural grasslands.

C Tyrrell, C M Burgess, F P Brennan, D Münzenmaier, D Drissner, R J Leigh, F Walsh
{"title":"Genomic analysis of antimicrobial resistant Escherichia coli isolated from manure and manured agricultural grasslands.","authors":"C Tyrrell, C M Burgess, F P Brennan, D Münzenmaier, D Drissner, R J Leigh, F Walsh","doi":"10.1038/s44259-025-00081-8","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) is a multifactorial issue involving an intertwining relationship between animals, humans and the environment. The environment can harbour Escherichia coli that are pathogenic or commensal. Escherichia coli is used as an indicator of environmental faecal contamination. Through culture dependent approaches this study identified 46 E. coli isolates in porcine and bovine manure, non-manured and manured soil, and manured grass. The grass isolation highlights grass as an environmental reservoir for E. coli. We also identified a diverse plasmidome with 23 different plasmid replicon types. The E. coli isolates were phenotypically antimicrobial resistant, predominantly multidrug resistant. Whole genome sequencing identified 31 antimicrobial resistance genes, and mutations in the gyrA, parC, and parE genes, conferring fluoroquinolone resistance. This study demonstrates grass as an understudied environmental niche of AMR E. coli, which directly links the environment to the grass grazing animal and vice-versa via the circular economy of manure application.</p>","PeriodicalId":520007,"journal":{"name":"npj antimicrobials and resistance","volume":"3 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790903/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj antimicrobials and resistance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44259-025-00081-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial resistance (AMR) is a multifactorial issue involving an intertwining relationship between animals, humans and the environment. The environment can harbour Escherichia coli that are pathogenic or commensal. Escherichia coli is used as an indicator of environmental faecal contamination. Through culture dependent approaches this study identified 46 E. coli isolates in porcine and bovine manure, non-manured and manured soil, and manured grass. The grass isolation highlights grass as an environmental reservoir for E. coli. We also identified a diverse plasmidome with 23 different plasmid replicon types. The E. coli isolates were phenotypically antimicrobial resistant, predominantly multidrug resistant. Whole genome sequencing identified 31 antimicrobial resistance genes, and mutations in the gyrA, parC, and parE genes, conferring fluoroquinolone resistance. This study demonstrates grass as an understudied environmental niche of AMR E. coli, which directly links the environment to the grass grazing animal and vice-versa via the circular economy of manure application.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信