{"title":"Mesoporous polymeric nanoparticles for effective treatment of inflammatory diseases: an in vivo study†","authors":"Divya Pareek, Md. Zeyaullah, Sukanya Patra, Oviya Alagu, Gurmeet Singh, Kirti Wasnik, Prem Shankar Gupta and Pradip Paik","doi":"10.1039/D4TB02012J","DOIUrl":null,"url":null,"abstract":"<p >Acute inflammatory diseases require suitable medicine over the existing therapeutics. In this line, the present work is focused on developing polymeric nanomedicine for the treatment of inflammatory disorders. Herein, cell viable nanoparticles (GlyNPs) of size 180–250 nm in diameter and pore size of 4–5 nm in diameter, based on glycine and acryloyl chloride, have been developed and proved to be a potential anti-inflammatory agent without using any conventional drugs. These particles exhibit colloidal stability (with a zeta potential of −35.6 mV). A network pharmacology-based computational study has been executed on 9076 genes and proteins responsible for inflammatory diseases, out of which 10 are selected that have a major role in rheumatoid arthritis (RA). <em>In silico</em> docking study has been conducted to find out the targeted efficiency of the GlyNPs considering 10 inflammation-specific markers, namely IL-6, IL-1β, TNF-α, TLR-4, STAT-1, MAPK-8, MAPK-14, iNOS, NF-κβ and COX-2. The results revealed that the GlyNPs could be an excellent anti-inflammatory component similar to aspirin. The <em>in vitro</em> inflammation activity of these GlyNPs has also been checked on an inflammation model generated by LPS in RAW 264.7 macrophages. Then, the <em>in vitro</em> anti-inflammation efficiency has been checked with 10–150 μg mL<small><sup>−1</sup></small> of GlyNP doses. The treatment efficiency has been checked on inflammation-responsible immune markers (NO level, NF-κβ, INF-γ, IL-6, IL-10, and TNF-α) and it was found that the GlyNPs are an excellent component in reducing inflammation. The <em>in vivo</em> therapeutic response of GlyNPs on the induced rheumatoid arthritis (RA) model has been evaluated by measuring the morphological, biochemical and immune-cytokine and interferon levels responsible for the inflammation, using a 2 g kg<small><sup>−1</sup></small> dose (sample to weight of rat). The anti-inflammatory efficiency of GlyNPs without using additional drugs was found to be excellent. Thus, GlyNPs could be paramount for the potential treatment of various inflammatory diseases.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 9","pages":" 3094-3113"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02012j","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Acute inflammatory diseases require suitable medicine over the existing therapeutics. In this line, the present work is focused on developing polymeric nanomedicine for the treatment of inflammatory disorders. Herein, cell viable nanoparticles (GlyNPs) of size 180–250 nm in diameter and pore size of 4–5 nm in diameter, based on glycine and acryloyl chloride, have been developed and proved to be a potential anti-inflammatory agent without using any conventional drugs. These particles exhibit colloidal stability (with a zeta potential of −35.6 mV). A network pharmacology-based computational study has been executed on 9076 genes and proteins responsible for inflammatory diseases, out of which 10 are selected that have a major role in rheumatoid arthritis (RA). In silico docking study has been conducted to find out the targeted efficiency of the GlyNPs considering 10 inflammation-specific markers, namely IL-6, IL-1β, TNF-α, TLR-4, STAT-1, MAPK-8, MAPK-14, iNOS, NF-κβ and COX-2. The results revealed that the GlyNPs could be an excellent anti-inflammatory component similar to aspirin. The in vitro inflammation activity of these GlyNPs has also been checked on an inflammation model generated by LPS in RAW 264.7 macrophages. Then, the in vitro anti-inflammation efficiency has been checked with 10–150 μg mL−1 of GlyNP doses. The treatment efficiency has been checked on inflammation-responsible immune markers (NO level, NF-κβ, INF-γ, IL-6, IL-10, and TNF-α) and it was found that the GlyNPs are an excellent component in reducing inflammation. The in vivo therapeutic response of GlyNPs on the induced rheumatoid arthritis (RA) model has been evaluated by measuring the morphological, biochemical and immune-cytokine and interferon levels responsible for the inflammation, using a 2 g kg−1 dose (sample to weight of rat). The anti-inflammatory efficiency of GlyNPs without using additional drugs was found to be excellent. Thus, GlyNPs could be paramount for the potential treatment of various inflammatory diseases.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices