Trends and considerations in annulus fibrosus in vitro model design

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL
AL Castro , RM Gonçalves
{"title":"Trends and considerations in annulus fibrosus in vitro model design","authors":"AL Castro ,&nbsp;RM Gonçalves","doi":"10.1016/j.actbio.2025.01.060","DOIUrl":null,"url":null,"abstract":"<div><div>Annulus Fibrosus (AF) tissue integrity maintains intervertebral disc (IVD) structure, essential to spine mobility and shock absorption. However, this tissue, which confines nucleus pulposus (NP), has been poorly investigated, partially due to the lack of appropriate study models. This review provides a comprehensive analysis of AF <em>in vitro</em> models. By critically assessing the current AF <em>in vitro</em> models, this works thoroughly identifies key gaps in replicating the tissue's complex microenvironment. Finally, we outline the essential criteria for developing more accurate and reliable AF models, emphasizing the importance of biomaterial composition, architecture, and microenvironmental cues. By advancing <em>in vitro</em> models, we aim to deepen the understanding of AF failure mechanisms and support the development of novel therapeutic strategies for IVD herniation. Insights gained from this review may also have broader applications in regenerative medicine, particularly in the study and treatment of other connective tissue disorders.</div></div><div><h3>Statement of significance</h3><div>This review evaluates the current <em>in vitro</em> models of the annulus fibrosus (AF), a key component of the intervertebral disc (IVD). By identifying gaps in these models, particularly in replicating tissue's complex microenvironment, we propose essential criteria for the development of more accurate AF models, to better understand the pathomechanisms and potentially aid the development of therapeutic approaches for spinal disorders. The findings also extend to broader studies of musculoskeletal tissue disorders in the context of regenerative medicine, appealing to a diverse biomedical research readership.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"195 ","pages":"Pages 42-51"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125000807","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Annulus Fibrosus (AF) tissue integrity maintains intervertebral disc (IVD) structure, essential to spine mobility and shock absorption. However, this tissue, which confines nucleus pulposus (NP), has been poorly investigated, partially due to the lack of appropriate study models. This review provides a comprehensive analysis of AF in vitro models. By critically assessing the current AF in vitro models, this works thoroughly identifies key gaps in replicating the tissue's complex microenvironment. Finally, we outline the essential criteria for developing more accurate and reliable AF models, emphasizing the importance of biomaterial composition, architecture, and microenvironmental cues. By advancing in vitro models, we aim to deepen the understanding of AF failure mechanisms and support the development of novel therapeutic strategies for IVD herniation. Insights gained from this review may also have broader applications in regenerative medicine, particularly in the study and treatment of other connective tissue disorders.

Statement of significance

This review evaluates the current in vitro models of the annulus fibrosus (AF), a key component of the intervertebral disc (IVD). By identifying gaps in these models, particularly in replicating tissue's complex microenvironment, we propose essential criteria for the development of more accurate AF models, to better understand the pathomechanisms and potentially aid the development of therapeutic approaches for spinal disorders. The findings also extend to broader studies of musculoskeletal tissue disorders in the context of regenerative medicine, appealing to a diverse biomedical research readership.

Abstract Image

纤维环体外模型设计的趋势和考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信