Multi-gesture drag-and-drop decoding in a 2D iBCI control task.

Jacob Tobias Gusman, Tommy Hosman, Rekha Crawford, Tyler Singer-Clark, Anastasia Kapitonava, Jessica Kelemen, Nick Hahn, Jaimie M Henderson, Leigh Hochberg, John Simeral, Carlos Vargas-Irwin
{"title":"Multi-gesture drag-and-drop decoding in a 2D iBCI control task.","authors":"Jacob Tobias Gusman, Tommy Hosman, Rekha Crawford, Tyler Singer-Clark, Anastasia Kapitonava, Jessica Kelemen, Nick Hahn, Jaimie M Henderson, Leigh Hochberg, John Simeral, Carlos Vargas-Irwin","doi":"10.1088/1741-2552/adb180","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Intracortical brain-computer interfaces (iBCIs) have demonstrated the ability to enable point and click as well as reach and grasp control for people with tetraplegia. However, few studies have investigated iBCIs during long-duration discrete movements that would enable common computer interactions such as \"click-and-hold\" or \"drag-and-drop\".</p><p><strong>Approach: </strong>Here, we examined the performance of multi-class and binary (attempt/no-attempt) classification of neural activity in the left precentral gyrus of two BrainGate2 clinical trial participants performing hand gestures for 1, 2, and 4 seconds in duration. We then designed a novel \"latch decoder\" that utilizes parallel multi-class and binary decoding processes and evaluated its performance on data from isolated sustained gesture attempts and a multi-gesture drag-and-drop task.</p><p><strong>Main results: </strong>Neural activity during sustained gestures revealed a marked decrease in the discriminability of hand gestures sustained beyond 1 second. Compared to standard direct decoding methods, the latch decoder demonstrated substantial improvement in decoding accuracy for gestures performed independently or in conjunction with simultaneous 2D cursor control.</p><p><strong>Significance: </strong>This work highlights the unique neurophysiologic response patterns of sustained gesture attempts in human motor cortex and demonstrates a promising decoding approach that could enable individuals with tetraplegia to intuitively control a wider range of consumer electronics using an iBCI.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adb180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Intracortical brain-computer interfaces (iBCIs) have demonstrated the ability to enable point and click as well as reach and grasp control for people with tetraplegia. However, few studies have investigated iBCIs during long-duration discrete movements that would enable common computer interactions such as "click-and-hold" or "drag-and-drop".

Approach: Here, we examined the performance of multi-class and binary (attempt/no-attempt) classification of neural activity in the left precentral gyrus of two BrainGate2 clinical trial participants performing hand gestures for 1, 2, and 4 seconds in duration. We then designed a novel "latch decoder" that utilizes parallel multi-class and binary decoding processes and evaluated its performance on data from isolated sustained gesture attempts and a multi-gesture drag-and-drop task.

Main results: Neural activity during sustained gestures revealed a marked decrease in the discriminability of hand gestures sustained beyond 1 second. Compared to standard direct decoding methods, the latch decoder demonstrated substantial improvement in decoding accuracy for gestures performed independently or in conjunction with simultaneous 2D cursor control.

Significance: This work highlights the unique neurophysiologic response patterns of sustained gesture attempts in human motor cortex and demonstrates a promising decoding approach that could enable individuals with tetraplegia to intuitively control a wider range of consumer electronics using an iBCI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信