Design and advances in antioxidant hydrogels for ROS-induced oxidative disease

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Yi Xia , Xinyi Li , Fan Huang, Yuanhao Wu, Jinjian Liu, Jianfeng Liu
{"title":"Design and advances in antioxidant hydrogels for ROS-induced oxidative disease","authors":"Yi Xia ,&nbsp;Xinyi Li ,&nbsp;Fan Huang,&nbsp;Yuanhao Wu,&nbsp;Jinjian Liu,&nbsp;Jianfeng Liu","doi":"10.1016/j.actbio.2025.01.057","DOIUrl":null,"url":null,"abstract":"<div><div>Reactive oxygen species (ROS) play a crucial role in human physiological processes, but oxidative stress caused by excessive ROS may lead to a variety of acute and chronic diseases. Despite the development of various strategies and biomaterials, an efficiently and broadly applied method for treatment of ROS-induced oxidative disease remains a bottleneck. Aiming to improve the local oxidative stress environment, numerous bioactive hydrogels with antioxidant properties have emerged and are proven to quickly and continuously eliminate excessive ROS. To deeply understand the design principles and applications of antioxidant hydrogels is highly beneficial for designing antioxidant hydrogels for treatment of oxidative disease. This review provides a detailed summary of recent advances in design and applications of antioxidant hydrogels for various ROS-induced oxidative diseases. In this review, the kinds of antioxidant components in antioxidant hydrogels are outlined in detail. Additionally, the crosslinking methods and the biomedical applications of antioxidant hydrogels are widely summarized and discussed, especially focusing on their usage in different types of diseases and the attention given to the treatment of diseases such as skin wounds, myocardial infarction, and osteoarthritis. Finally, the future development direction of antioxidant hydrogel is further proposed.</div></div><div><h3>Statement of significance</h3><div>Oxidative stress is a pivotal biochemical process that plays a critical role in cellular homeostasis. Excessive cellular oxidative stress triggers an inflammatory response, which is implicated in a spectrum of associated diseases. Given the critical need for managing oxidative stress, antioxidant therapies have become a vital focus in medical research. Hydrogels have garnered substantial interest among biomaterial scientists due to their hydrophilic nature and biocompatibility. The review delves into the realm of antioxidant hydrogels, encompassing the classification of antioxidant components, the synthesis and fabrication of hydrogels, and a comprehensive overview of the biological applications and challenges of these antioxidant hydrogels. Aiming to provide new perspectives for researchers in developing cutting-edge therapeutic approaches that leverage antioxidant hydrogels.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"194 ","pages":"Pages 80-97"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125000777","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive oxygen species (ROS) play a crucial role in human physiological processes, but oxidative stress caused by excessive ROS may lead to a variety of acute and chronic diseases. Despite the development of various strategies and biomaterials, an efficiently and broadly applied method for treatment of ROS-induced oxidative disease remains a bottleneck. Aiming to improve the local oxidative stress environment, numerous bioactive hydrogels with antioxidant properties have emerged and are proven to quickly and continuously eliminate excessive ROS. To deeply understand the design principles and applications of antioxidant hydrogels is highly beneficial for designing antioxidant hydrogels for treatment of oxidative disease. This review provides a detailed summary of recent advances in design and applications of antioxidant hydrogels for various ROS-induced oxidative diseases. In this review, the kinds of antioxidant components in antioxidant hydrogels are outlined in detail. Additionally, the crosslinking methods and the biomedical applications of antioxidant hydrogels are widely summarized and discussed, especially focusing on their usage in different types of diseases and the attention given to the treatment of diseases such as skin wounds, myocardial infarction, and osteoarthritis. Finally, the future development direction of antioxidant hydrogel is further proposed.

Statement of significance

Oxidative stress is a pivotal biochemical process that plays a critical role in cellular homeostasis. Excessive cellular oxidative stress triggers an inflammatory response, which is implicated in a spectrum of associated diseases. Given the critical need for managing oxidative stress, antioxidant therapies have become a vital focus in medical research. Hydrogels have garnered substantial interest among biomaterial scientists due to their hydrophilic nature and biocompatibility. The review delves into the realm of antioxidant hydrogels, encompassing the classification of antioxidant components, the synthesis and fabrication of hydrogels, and a comprehensive overview of the biological applications and challenges of these antioxidant hydrogels. Aiming to provide new perspectives for researchers in developing cutting-edge therapeutic approaches that leverage antioxidant hydrogels.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信