CAR T-cell Therapy Landscape in Pediatric, Adolescent and Young Adult Oncology - A Comprehensive Analysis of Clinical Trials.

David A Martínez-Gamboa, Rhea Hans, Eider Moreno-Cortes, Juana Figueroa-Aguirre, Juan Esteban Garcia-Robledo, Fabio Vargas-Cely, Natalie Booth, Daniela A Castro-Martinez, Roberta H Adams, Januario E Castro
{"title":"CAR T-cell Therapy Landscape in Pediatric, Adolescent and Young Adult Oncology - A Comprehensive Analysis of Clinical Trials.","authors":"David A Martínez-Gamboa, Rhea Hans, Eider Moreno-Cortes, Juana Figueroa-Aguirre, Juan Esteban Garcia-Robledo, Fabio Vargas-Cely, Natalie Booth, Daniela A Castro-Martinez, Roberta H Adams, Januario E Castro","doi":"10.1016/j.critrevonc.2025.104648","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric Antigen Receptor (CAR) T-cell therapy has emerged as a transformative approach in cancer treatment, particularly for hematologic malignancies. This therapy involves the genetic modification of patients' T-cells to target specific tumor antigens, bypassing the traditional MHC-TCR-mediated recognition. This innovation marks a significant step toward personalized medicine and precision oncology. In the pediatric, adolescent, and young adult (P-AYA) populations, Tisagenlecleucel (Kymriah®) exemplifies the success of CAR T-cell therapy, demonstrating significant efficacy in treating relapsed or refractory acute lymphoblastic leukemia (r/r ALL). However, the development of CAR T-cell therapies for P-AYA patients has not progressed as rapidly as for adults, with only one FDA approval for pediatric applications compared to six for adults up to 2024. Several challenges hinder the development of pediatric CAR T-cell therapies, including complex production logistics, limited clinical site access, restrictive patient eligibility criteria, and financial constraints, necessitating more effective incentives for pediatric oncology drug development independent of adult indications. To assess the current landscape of CAR T-cell therapy in P-AYA oncology, we conducted a comprehensive review of clinical trials registered on ClinicalTrials.gov up to May 2024. Our analysis included 77 trials exclusively targeting the P-AYA population from an initial pool of 40,690 studies filtered by age, dates, and specific criteria related to CAR T-cell interventions in cancer therapy. We found that 45% of these trials originated from the USA and 30% from China. The data retrieved from these trials provided insights into various aspects, including histological categories, antigenic targets, CAR-T generations, costimulatory domains, manufacturing processes, geographical distribution, and funding sources. This review highlighted a predominant focus on hematologic malignancies, particularly B-cell acute lymphoblastic leukemia (B-ALL), with significant attention to dual antigen targeting (CD19 and CD22) to address resistance mechanisms. Emerging targets such as GD2 for solid tumors and B7-H3 for various cancers also showed promise. Additionally, most trials still utilize second-generation CAR-T constructs with 4-1BB costimulatory domains, reflecting a conservative approach in pediatric populations. Our findings underscore the disparity in CAR T-cell therapy development between pediatric and adult populations, driven by distinct biological, ethical, and economic considerations. Pediatric cancers require specialized treatments tailored to the unique biology and genetic makeup of pediatric oncology. However, research and drug development have historically focused less on pediatric needs. Despite legislative efforts to promote pediatric oncology drug development, significant gaps remain. Clinical trials for P-AYA populations face challenges in patient enrollment, trial design, and funding, often relying on academic and non-profit institutions. Addressing these barriers is critical for advancing CAR T-cell therapy in pediatric oncology, improving outcomes, and ensuring equitable access to innovative treatments for these vulnerable populations. This review aims to inform future research and policy decisions, promoting advancements in CAR T-cell therapy for P-AYA cancer patients.</p>","PeriodicalId":93958,"journal":{"name":"Critical reviews in oncology/hematology","volume":" ","pages":"104648"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in oncology/hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.critrevonc.2025.104648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chimeric Antigen Receptor (CAR) T-cell therapy has emerged as a transformative approach in cancer treatment, particularly for hematologic malignancies. This therapy involves the genetic modification of patients' T-cells to target specific tumor antigens, bypassing the traditional MHC-TCR-mediated recognition. This innovation marks a significant step toward personalized medicine and precision oncology. In the pediatric, adolescent, and young adult (P-AYA) populations, Tisagenlecleucel (Kymriah®) exemplifies the success of CAR T-cell therapy, demonstrating significant efficacy in treating relapsed or refractory acute lymphoblastic leukemia (r/r ALL). However, the development of CAR T-cell therapies for P-AYA patients has not progressed as rapidly as for adults, with only one FDA approval for pediatric applications compared to six for adults up to 2024. Several challenges hinder the development of pediatric CAR T-cell therapies, including complex production logistics, limited clinical site access, restrictive patient eligibility criteria, and financial constraints, necessitating more effective incentives for pediatric oncology drug development independent of adult indications. To assess the current landscape of CAR T-cell therapy in P-AYA oncology, we conducted a comprehensive review of clinical trials registered on ClinicalTrials.gov up to May 2024. Our analysis included 77 trials exclusively targeting the P-AYA population from an initial pool of 40,690 studies filtered by age, dates, and specific criteria related to CAR T-cell interventions in cancer therapy. We found that 45% of these trials originated from the USA and 30% from China. The data retrieved from these trials provided insights into various aspects, including histological categories, antigenic targets, CAR-T generations, costimulatory domains, manufacturing processes, geographical distribution, and funding sources. This review highlighted a predominant focus on hematologic malignancies, particularly B-cell acute lymphoblastic leukemia (B-ALL), with significant attention to dual antigen targeting (CD19 and CD22) to address resistance mechanisms. Emerging targets such as GD2 for solid tumors and B7-H3 for various cancers also showed promise. Additionally, most trials still utilize second-generation CAR-T constructs with 4-1BB costimulatory domains, reflecting a conservative approach in pediatric populations. Our findings underscore the disparity in CAR T-cell therapy development between pediatric and adult populations, driven by distinct biological, ethical, and economic considerations. Pediatric cancers require specialized treatments tailored to the unique biology and genetic makeup of pediatric oncology. However, research and drug development have historically focused less on pediatric needs. Despite legislative efforts to promote pediatric oncology drug development, significant gaps remain. Clinical trials for P-AYA populations face challenges in patient enrollment, trial design, and funding, often relying on academic and non-profit institutions. Addressing these barriers is critical for advancing CAR T-cell therapy in pediatric oncology, improving outcomes, and ensuring equitable access to innovative treatments for these vulnerable populations. This review aims to inform future research and policy decisions, promoting advancements in CAR T-cell therapy for P-AYA cancer patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信