Wen Jiang, Yu Xu, Xin-Chuang Wang, Di Wu, Yi-Nan Du and Jiang-Ning Hu
{"title":"A phlorotannin nanoparticle–hydrogel composite for enhanced oral delivery and treatment of ulcerative colitis†","authors":"Wen Jiang, Yu Xu, Xin-Chuang Wang, Di Wu, Yi-Nan Du and Jiang-Ning Hu","doi":"10.1039/D4TB01811G","DOIUrl":null,"url":null,"abstract":"<p >Designing innovative strategies for oral delivery of active compounds is particularly promising for the treatment of intestinal diseases such as ulcerative colitis (UC). However, obstacles like poor therapeutic efficacy, low bioavailability, and limited biocompatibility need to be addressed. Here, <em>via</em> the Schiff base reaction, we developed nanoparticles based on PT (PT NPs) and incorporated them into ascorbate palmitate hydrogels (AP-Gel) to create nanoparticle–hydrogel composites (PT NPs–Gel). <em>In vitro</em> studies showed that PT NPs–Gel reduced pro-inflammatory cytokines (NO, iNOS, TNF-α, and IL-1β), increased the anti-inflammatory cytokine IL-10, and enhanced antioxidant enzyme activities (SOD and CAT) with effect. In the DSS-induced UC mouse model, PT NPs–Gel significantly alleviated UC symptoms, improved the length of colon, and lowered the disease activity index (DAI) score. Histological analysis indicated that PT NPs–Gel protected the colonic epithelial barrier and reduced inflammation. The PT NPs–Gel formulation utilizes the biological properties of the hydrogel carrier to improve the bioavailability of active compounds and demonstrates effective anti-inflammatory and antioxidant properties, making it a promising oral delivery system for the treatment of UC and potentially other inflammatory bowel diseases.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 9","pages":" 3080-3093"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb01811g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Designing innovative strategies for oral delivery of active compounds is particularly promising for the treatment of intestinal diseases such as ulcerative colitis (UC). However, obstacles like poor therapeutic efficacy, low bioavailability, and limited biocompatibility need to be addressed. Here, via the Schiff base reaction, we developed nanoparticles based on PT (PT NPs) and incorporated them into ascorbate palmitate hydrogels (AP-Gel) to create nanoparticle–hydrogel composites (PT NPs–Gel). In vitro studies showed that PT NPs–Gel reduced pro-inflammatory cytokines (NO, iNOS, TNF-α, and IL-1β), increased the anti-inflammatory cytokine IL-10, and enhanced antioxidant enzyme activities (SOD and CAT) with effect. In the DSS-induced UC mouse model, PT NPs–Gel significantly alleviated UC symptoms, improved the length of colon, and lowered the disease activity index (DAI) score. Histological analysis indicated that PT NPs–Gel protected the colonic epithelial barrier and reduced inflammation. The PT NPs–Gel formulation utilizes the biological properties of the hydrogel carrier to improve the bioavailability of active compounds and demonstrates effective anti-inflammatory and antioxidant properties, making it a promising oral delivery system for the treatment of UC and potentially other inflammatory bowel diseases.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices