Gravity-based microfiltration reveals unexpected prevalence of circulating tumor cell clusters in ovarian and colorectal cancer.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Anne Meunier, Javier Alejandro Hernández-Castro, Nicholas Chahley, Laudine Communal, Sara Kheireddine, Newsha Koushki, Nadia Davoudvandi, Sara Al Habyan, Benjamin Péant, Anthoula Lazaris, Andy Ng, Teodor Veres, Luke McCaffrey, Diane Provencher, Peter Metrakos, Anne-Marie Mes-Masson, David Juncker
{"title":"Gravity-based microfiltration reveals unexpected prevalence of circulating tumor cell clusters in ovarian and colorectal cancer.","authors":"Anne Meunier, Javier Alejandro Hernández-Castro, Nicholas Chahley, Laudine Communal, Sara Kheireddine, Newsha Koushki, Nadia Davoudvandi, Sara Al Habyan, Benjamin Péant, Anthoula Lazaris, Andy Ng, Teodor Veres, Luke McCaffrey, Diane Provencher, Peter Metrakos, Anne-Marie Mes-Masson, David Juncker","doi":"10.1038/s43856-024-00702-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Circulating tumor cells (CTCs) are rare (a few cells per milliliter of blood) and mostly isolated as single-cell CTCs (scCTCs). CTC clusters (cCTCs), even rarer, are of growing interest, notably because of their higher metastatic potential, but very difficult to isolate.</p><p><strong>Method: </strong>We introduce gravity-based microfiltration (GµF) for facile isolation of cCTCs using in-house fabricated microfilters and 3D printed cartridges. Optimal flow rate and pore size for cCTC isolation are determined by GµF of cultured ovarian single cells and cell clusters spiked in healthy blood. We perform GµF of blood from orthotopic ovarian cancer mouse models and characterize the morphological features of scCTCs and cCTCs, and the expression of molecular markers for aggressiveness. Finally, we analyze blood from 17 epithelial ovarian cancer patients with either localized or metastatic disease, and from 13 colorectal cancer liver metastasis patients.</p><p><strong>Results: </strong>Here, we show that GµF optimized for cell cluster isolation captures cCTCs from blood while minimizing unwanted cluster disaggregation, with ~85% capture efficiency. We detect cCTCs in every patient, with between 2-100+ cells. We find cCTCs represent between 5-30% of all CTC capture events, and 10-80% of the CTCs are clustered; remarkably, in 10 patients, most CTCs are circulating not as scCTCs, but as cCTCs.</p><p><strong>Conclusions: </strong>GµF uncovers the unexpected prevalence and frequency of cCTCs including sometimes very large ones in epithelial ovarian cancer patients, and motivates additional studies to uncover their properties and role in disease progression.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"33"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790846/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-024-00702-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Circulating tumor cells (CTCs) are rare (a few cells per milliliter of blood) and mostly isolated as single-cell CTCs (scCTCs). CTC clusters (cCTCs), even rarer, are of growing interest, notably because of their higher metastatic potential, but very difficult to isolate.

Method: We introduce gravity-based microfiltration (GµF) for facile isolation of cCTCs using in-house fabricated microfilters and 3D printed cartridges. Optimal flow rate and pore size for cCTC isolation are determined by GµF of cultured ovarian single cells and cell clusters spiked in healthy blood. We perform GµF of blood from orthotopic ovarian cancer mouse models and characterize the morphological features of scCTCs and cCTCs, and the expression of molecular markers for aggressiveness. Finally, we analyze blood from 17 epithelial ovarian cancer patients with either localized or metastatic disease, and from 13 colorectal cancer liver metastasis patients.

Results: Here, we show that GµF optimized for cell cluster isolation captures cCTCs from blood while minimizing unwanted cluster disaggregation, with ~85% capture efficiency. We detect cCTCs in every patient, with between 2-100+ cells. We find cCTCs represent between 5-30% of all CTC capture events, and 10-80% of the CTCs are clustered; remarkably, in 10 patients, most CTCs are circulating not as scCTCs, but as cCTCs.

Conclusions: GµF uncovers the unexpected prevalence and frequency of cCTCs including sometimes very large ones in epithelial ovarian cancer patients, and motivates additional studies to uncover their properties and role in disease progression.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信