Toward systematic finite element reconstructions of accidents involving vulnerable road users.

IF 1.6 3区 工程技术 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Natalia Lindgren, Qi Huang, Qiantailang Yuan, Miao Lin, Peng Wang, Bengt Pipkorn, Svein Kleiven, Xiaogai Li
{"title":"Toward systematic finite element reconstructions of accidents involving vulnerable road users.","authors":"Natalia Lindgren, Qi Huang, Qiantailang Yuan, Miao Lin, Peng Wang, Bengt Pipkorn, Svein Kleiven, Xiaogai Li","doi":"10.1080/15389588.2024.2449257","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To combat the global fatality rates among vulnerable road users (VRUs), prioritizing research on head injury mechanisms and human tolerance levels in vehicle-to-VRU traffic collisions is imperative. A foundational step for VRU injury prevention is often to create virtual reconstructions of real-world collisions. Thus, efficient and trustworthy reconstruction tools are needed to make use of recent advances in accident data collection routines and Finite Element (FE) human body modeling.</p><p><strong>Methods: </strong>In this study, a comprehensive and streamlined reconstruction methodology, starting from a video-recorded accident, has been developed. The workflow, that includes state-of-the-art tools for personalization of human body models (HBMs) and vehicles, was evaluated and demonstrated through 20 real-world VRU collision cases.</p><p><strong>Results: </strong>The FE models successfully replicated the vehicle damage that was observed in on-scene photographs of the post-impact vehicle, as well as impact kinematics captured in dash cam or surveillance recordings.</p><p><strong>Conclusions: </strong>The findings highlight how video evidence can considerably narrow down the number of plausible impact scenarios and raise the credibility of virtual reconstructions of real-world VRU collision events. More importantly, this study demonstrates how, with an efficient and systematic methodology, FE might be feasible also for large-scale VRU accident datasets.</p>","PeriodicalId":54422,"journal":{"name":"Traffic Injury Prevention","volume":" ","pages":"1-12"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic Injury Prevention","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15389588.2024.2449257","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To combat the global fatality rates among vulnerable road users (VRUs), prioritizing research on head injury mechanisms and human tolerance levels in vehicle-to-VRU traffic collisions is imperative. A foundational step for VRU injury prevention is often to create virtual reconstructions of real-world collisions. Thus, efficient and trustworthy reconstruction tools are needed to make use of recent advances in accident data collection routines and Finite Element (FE) human body modeling.

Methods: In this study, a comprehensive and streamlined reconstruction methodology, starting from a video-recorded accident, has been developed. The workflow, that includes state-of-the-art tools for personalization of human body models (HBMs) and vehicles, was evaluated and demonstrated through 20 real-world VRU collision cases.

Results: The FE models successfully replicated the vehicle damage that was observed in on-scene photographs of the post-impact vehicle, as well as impact kinematics captured in dash cam or surveillance recordings.

Conclusions: The findings highlight how video evidence can considerably narrow down the number of plausible impact scenarios and raise the credibility of virtual reconstructions of real-world VRU collision events. More importantly, this study demonstrates how, with an efficient and systematic methodology, FE might be feasible also for large-scale VRU accident datasets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Traffic Injury Prevention
Traffic Injury Prevention PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
3.60
自引率
10.00%
发文量
137
审稿时长
3 months
期刊介绍: The purpose of Traffic Injury Prevention is to bridge the disciplines of medicine, engineering, public health and traffic safety in order to foster the science of traffic injury prevention. The archival journal focuses on research, interventions and evaluations within the areas of traffic safety, crash causation, injury prevention and treatment. General topics within the journal''s scope are driver behavior, road infrastructure, emerging crash avoidance technologies, crash and injury epidemiology, alcohol and drugs, impact injury biomechanics, vehicle crashworthiness, occupant restraints, pedestrian safety, evaluation of interventions, economic consequences and emergency and clinical care with specific application to traffic injury prevention. The journal includes full length papers, review articles, case studies, brief technical notes and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信