Adsorption behavior of levofloxacin hydrochloride on non-degradable microplastics aging with H2O2.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Yinghua Li, Yiyan Wang, Shutong Yang, Terun Bao, Fei Su, Jie Qian
{"title":"Adsorption behavior of levofloxacin hydrochloride on non-degradable microplastics aging with H<sub>2</sub>O<sub>2</sub>.","authors":"Yinghua Li, Yiyan Wang, Shutong Yang, Terun Bao, Fei Su, Jie Qian","doi":"10.1002/wer.70021","DOIUrl":null,"url":null,"abstract":"<p><p>Plastics pollutants, especially microplastics (MPs, <5 mm in diameter) and levofloxacin hydrochloride (Lev-HCl) often co-exist in the aquatic environment. To explore the adsorption processes and mechanisms of Lev-HCl by non-degradable MPs, in this study, H<sub>2</sub>O<sub>2</sub> oxidation was used to age polyvinyl chloride (PVC), polystyrene (PS), and polyethylene terephthalate (PET) MPs. The results demonstrated that the equilibrium adsorption capacity increased significantly after aging, as H<sub>2</sub>O<sub>2</sub>-PET (1.167 mg/g) > PET (0.995 mg/g), H<sub>2</sub>O<sub>2</sub>-PS (1.057 mg/g) > PS (0.957 mg/g), H<sub>2</sub>O<sub>2</sub>-PVC (1.107 mg/g) > PVC (0.975 mg/g). After H<sub>2</sub>O<sub>2</sub> aging, the hydrogen bond (-OH) was more obvious, and π-π interactions were significantly enhanced. These non-degradable MPs mainly adsorbed Lev-HCl by micropore filling (contributions: PVC 65.9%, PS 56%, PET 63.5%). The current study highlights the potential of non-degradable MPs to act as a vector for Lev-HCl in the aquatic environment, especially after H<sub>2</sub>O<sub>2</sub> aging. PRACTITIONER POINTS: Adsorption behavior of Lev-HCl onto three non-degradable MPs was elucidated. The adsorption capacity increased significantly after aging for PVC, PS, and PET MPs. The hydrogen bonding and π-π interactions of H<sub>2</sub>O<sub>2</sub>-aged MPs were more significant. Multi-layer adsorption on non-homogeneous surfaces via micropore filling was revealed.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"97 2","pages":"e70021"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.70021","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Plastics pollutants, especially microplastics (MPs, <5 mm in diameter) and levofloxacin hydrochloride (Lev-HCl) often co-exist in the aquatic environment. To explore the adsorption processes and mechanisms of Lev-HCl by non-degradable MPs, in this study, H2O2 oxidation was used to age polyvinyl chloride (PVC), polystyrene (PS), and polyethylene terephthalate (PET) MPs. The results demonstrated that the equilibrium adsorption capacity increased significantly after aging, as H2O2-PET (1.167 mg/g) > PET (0.995 mg/g), H2O2-PS (1.057 mg/g) > PS (0.957 mg/g), H2O2-PVC (1.107 mg/g) > PVC (0.975 mg/g). After H2O2 aging, the hydrogen bond (-OH) was more obvious, and π-π interactions were significantly enhanced. These non-degradable MPs mainly adsorbed Lev-HCl by micropore filling (contributions: PVC 65.9%, PS 56%, PET 63.5%). The current study highlights the potential of non-degradable MPs to act as a vector for Lev-HCl in the aquatic environment, especially after H2O2 aging. PRACTITIONER POINTS: Adsorption behavior of Lev-HCl onto three non-degradable MPs was elucidated. The adsorption capacity increased significantly after aging for PVC, PS, and PET MPs. The hydrogen bonding and π-π interactions of H2O2-aged MPs were more significant. Multi-layer adsorption on non-homogeneous surfaces via micropore filling was revealed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信