Automated contouring for breast cancer radiotherapy in the isocentric lateral decubitus position: a neural network-based solution for enhanced precision and efficiency.

IF 2.7 3区 医学 Q3 ONCOLOGY
Pierre Loap, Rémi Monteil, Youlia Kirova, Jérémi Vu-Bezin
{"title":"Automated contouring for breast cancer radiotherapy in the isocentric lateral decubitus position: a neural network-based solution for enhanced precision and efficiency.","authors":"Pierre Loap, Rémi Monteil, Youlia Kirova, Jérémi Vu-Bezin","doi":"10.1007/s00066-024-02364-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Adjuvant radiotherapy is essential for reducing local recurrence and improving survival in breast cancer patients, but it carries a risk of ischemic cardiac toxicity, which increases with heart exposure. The isocentric lateral decubitus position, where the breast rests flat on a support, reduces heart exposure and leads to delivery of a more uniform dose. This position is particularly beneficial for patients with unique anatomies, such as those with pectus excavatum or larger breast sizes. While artificial intelligence (AI) algorithms for autocontouring have shown promise, they have not been tailored to this specific position. This study aimed to develop and evaluate a neural network-based autocontouring algorithm for patients treated in the isocentric lateral decubitus position.</p><p><strong>Materials and methods: </strong>In this single-center study, 1189 breast cancer patients treated after breast-conserving surgery were included. Their simulation CT scans (1209 scans) were used to train and validate a neural network-based autocontouring algorithm (nnU-Net). Of these, 1087 scans were used for training, and 122 scans were reserved for validation. The algorithm's performance was assessed using the Dice similarity coefficient (DSC) to compare the automatically delineated volumes with manual contours. A clinical evaluation of the algorithm was performed on 30 additional patients, with contours rated by two expert radiation oncologists.</p><p><strong>Results: </strong>The neural network-based algorithm achieved a segmentation time of approximately 4 min, compared to 20 min for manual segmentation. The DSC values for the validation cohort were 0.88 for the treated breast, 0.90 for the heart, 0.98 for the right lung, and 0.97 for the left lung. In the clinical evaluation, 90% of the automatically contoured breast volumes were rated as acceptable without corrections, while the remaining 10% required minor adjustments. All lung contours were accepted without corrections, and heart contours were rated as acceptable in 93.3% of cases, with minor corrections needed in 6.6% of cases.</p><p><strong>Conclusion: </strong>This neural network-based autocontouring algorithm offers a practical, time-saving solution for breast cancer radiotherapy planning in the isocentric lateral decubitus position. Its strong geometric performance, clinical acceptability, and significant time efficiency make it a valuable tool for modern radiotherapy practices, particularly in high-volume centers.</p>","PeriodicalId":21998,"journal":{"name":"Strahlentherapie und Onkologie","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strahlentherapie und Onkologie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00066-024-02364-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Adjuvant radiotherapy is essential for reducing local recurrence and improving survival in breast cancer patients, but it carries a risk of ischemic cardiac toxicity, which increases with heart exposure. The isocentric lateral decubitus position, where the breast rests flat on a support, reduces heart exposure and leads to delivery of a more uniform dose. This position is particularly beneficial for patients with unique anatomies, such as those with pectus excavatum or larger breast sizes. While artificial intelligence (AI) algorithms for autocontouring have shown promise, they have not been tailored to this specific position. This study aimed to develop and evaluate a neural network-based autocontouring algorithm for patients treated in the isocentric lateral decubitus position.

Materials and methods: In this single-center study, 1189 breast cancer patients treated after breast-conserving surgery were included. Their simulation CT scans (1209 scans) were used to train and validate a neural network-based autocontouring algorithm (nnU-Net). Of these, 1087 scans were used for training, and 122 scans were reserved for validation. The algorithm's performance was assessed using the Dice similarity coefficient (DSC) to compare the automatically delineated volumes with manual contours. A clinical evaluation of the algorithm was performed on 30 additional patients, with contours rated by two expert radiation oncologists.

Results: The neural network-based algorithm achieved a segmentation time of approximately 4 min, compared to 20 min for manual segmentation. The DSC values for the validation cohort were 0.88 for the treated breast, 0.90 for the heart, 0.98 for the right lung, and 0.97 for the left lung. In the clinical evaluation, 90% of the automatically contoured breast volumes were rated as acceptable without corrections, while the remaining 10% required minor adjustments. All lung contours were accepted without corrections, and heart contours were rated as acceptable in 93.3% of cases, with minor corrections needed in 6.6% of cases.

Conclusion: This neural network-based autocontouring algorithm offers a practical, time-saving solution for breast cancer radiotherapy planning in the isocentric lateral decubitus position. Its strong geometric performance, clinical acceptability, and significant time efficiency make it a valuable tool for modern radiotherapy practices, particularly in high-volume centers.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
12.90%
发文量
141
审稿时长
3-8 weeks
期刊介绍: Strahlentherapie und Onkologie, published monthly, is a scientific journal that covers all aspects of oncology with focus on radiooncology, radiation biology and radiation physics. The articles are not only of interest to radiooncologists but to all physicians interested in oncology, to radiation biologists and radiation physicists. The journal publishes original articles, review articles and case studies that are peer-reviewed. It includes scientific short communications as well as a literature review with annotated articles that inform the reader on new developments in the various disciplines concerned and hence allow for a sound overview on the latest results in radiooncology research. Founded in 1912, Strahlentherapie und Onkologie is the oldest oncological journal in the world. Today, contributions are published in English and German. All articles have English summaries and legends. The journal is the official publication of several scientific radiooncological societies and publishes the relevant communications of these societies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信