Ultraviolet-enhanced Fe0-activated H2O2 process for the removal of refractory organic matter from landfill leachate: Performance and mechanism.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Guonan Zhao, Ke Feng
{"title":"Ultraviolet-enhanced Fe<sup>0</sup>-activated H<sub>2</sub>O<sub>2</sub> process for the removal of refractory organic matter from landfill leachate: Performance and mechanism.","authors":"Guonan Zhao, Ke Feng","doi":"10.1002/wer.70022","DOIUrl":null,"url":null,"abstract":"<p><p>The Fenton-like process, utilizing zero-valent iron (Fe<sup>0</sup>) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), is employed to degrade refractory organic matter in membrane bioreactor (MBR) effluent derived from landfill leachate. However, the rate-limiting Fe<sup>2+</sup>/Fe<sup>3+</sup> redox step diminishes treatment efficacy and generates substantial iron sludge. This study elucidates the mechanism by which ultraviolet (UV) irradiation augments the Fe<sup>0</sup>/H<sub>2</sub>O<sub>2</sub> process for the removal of refractory organic matter in MBR effluent. The results show that the UV- enhanced H<sub>2</sub>O<sub>2</sub> process effectively disrupts the aromatic structure of organic compounds, reducing molecular weight, degree of polymerization, and humification. Compared with the Fe<sup>0</sup>/H<sub>2</sub>O<sub>2</sub> process, the removal efficiency of UV<sub>254</sub>, color number, and total organic carbon in the effluent treated by the UV/Fe<sup>0</sup>/H<sub>2</sub>O<sub>2</sub> process increased by 24.16%, 14.62%, and 57.46%, respectively. Concurrently, the generation of iron sludge was reduced by 21.6%. This enhancement is primarily attributed to UV's ability to intensify the Fe<sup>2+</sup>/Fe<sup>3+</sup> redox cycle and expedite the surface corrosion of Fe<sup>0</sup>, yielding more iron oxides. This accelerates the decomposition of H<sub>2</sub>O<sub>2</sub>, generating a higher quantity of <sup>•</sup>OH through both homogeneous and heterogeneous Fenton-like reactions. The refractory organic matter is removed through the oxidation by <sup>•</sup>OH, as well as the adsorption and precipitation facilitated by iron-based colloids. PRACTITIONER POINTS: UV promotes Fe<sup>0</sup>/H<sub>2</sub>O<sub>2</sub> process to degrade refractory organic matter in MBR effluent. UV promotes Fe<sup>0</sup> to dissolve more Fe<sup>2+</sup> and the redox cycle of Fe<sup>2+</sup> and Fe<sup>3+</sup>. The dosage of H<sub>2</sub>O<sub>2</sub> or Fe<sup>0</sup> influences the treatment effect of the process.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"97 2","pages":"e70022"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.70022","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Fenton-like process, utilizing zero-valent iron (Fe0) and hydrogen peroxide (H2O2), is employed to degrade refractory organic matter in membrane bioreactor (MBR) effluent derived from landfill leachate. However, the rate-limiting Fe2+/Fe3+ redox step diminishes treatment efficacy and generates substantial iron sludge. This study elucidates the mechanism by which ultraviolet (UV) irradiation augments the Fe0/H2O2 process for the removal of refractory organic matter in MBR effluent. The results show that the UV- enhanced H2O2 process effectively disrupts the aromatic structure of organic compounds, reducing molecular weight, degree of polymerization, and humification. Compared with the Fe0/H2O2 process, the removal efficiency of UV254, color number, and total organic carbon in the effluent treated by the UV/Fe0/H2O2 process increased by 24.16%, 14.62%, and 57.46%, respectively. Concurrently, the generation of iron sludge was reduced by 21.6%. This enhancement is primarily attributed to UV's ability to intensify the Fe2+/Fe3+ redox cycle and expedite the surface corrosion of Fe0, yielding more iron oxides. This accelerates the decomposition of H2O2, generating a higher quantity of OH through both homogeneous and heterogeneous Fenton-like reactions. The refractory organic matter is removed through the oxidation by OH, as well as the adsorption and precipitation facilitated by iron-based colloids. PRACTITIONER POINTS: UV promotes Fe0/H2O2 process to degrade refractory organic matter in MBR effluent. UV promotes Fe0 to dissolve more Fe2+ and the redox cycle of Fe2+ and Fe3+. The dosage of H2O2 or Fe0 influences the treatment effect of the process.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信