Mark James Horgan, Ines Sigg, Ioanna Poulopoulou, Francisco J Rodriguez-Mejias, Eva Albertini, Pietro Fusani, Florian Fischer, Eftychia Martinidou, Daniela Schuster, Stefan Martens, Pidder Jansen Dürr, Matthias Gauly, Hermann Stuppner, Alexander Weiss, Veronika Temml, Bianka Siewert
{"title":"Microtubule inhibition as a proposed mechanism for the anthelmintic effect of phytochemicals isolated from Cicerbita alpina.","authors":"Mark James Horgan, Ines Sigg, Ioanna Poulopoulou, Francisco J Rodriguez-Mejias, Eva Albertini, Pietro Fusani, Florian Fischer, Eftychia Martinidou, Daniela Schuster, Stefan Martens, Pidder Jansen Dürr, Matthias Gauly, Hermann Stuppner, Alexander Weiss, Veronika Temml, Bianka Siewert","doi":"10.1038/s41598-024-73958-9","DOIUrl":null,"url":null,"abstract":"<p><p>The alpine plant Cicerbita alpina (L.) Wallr., when grown as a sprout, is known as a bitter-tasting culinary delicacy. Recently it has also been reported to have anthelmintic activity, prompting further investigation into its mechanism of action. Liquid-liquid fractions were prepared from a methanolic extract of the aerial parts and were submitted in parallel to embryo development (ED), worm motility (WMT), and cytotoxicity assays for anthelmintic and toxicity evaluations. The anthelminthic assays revealed the more polar fractions to be most active against Ascaridia galli embryos (BuOH | 68% ED | c = 500 µg/ml and EtOAc | 65% ED | c = 500 µg/ml) and Caenorhabditis elegans adult worms (BuOH | 49% WMT | c = 150 µg/ml and EtOAc | 74% WMT | c = 150 µg/ml) suggesting the fraction's constituents possess dual anthelmintic activity against multiple life-cycle stages (i.e., eggs, worms) of helminths. Additionally, the BuOH fraction was non-cytotoxic to human cell-lines. Subsequent FCC and SEC derived subfractions were submitted to the anthelmintic assay workflow and the enriched subfractions B1 and E3.8, phytochemically assigned as 11-β,13-dihydrolactucin and luteolin, demonstrated bioactivity against the embryo phenotype (B1 | 58% ED | c = 1.8 µM and E3.8 | 46% ED | c = 1.7 µM) within range of the flubendazole control. Furthermore, luteolin was found to inhibit C. elegans egg hatching (luteolin | 65% EH | c = 10 µM | t = 10 h) within the range of the control albendazole. Both identified anthelmintic phytochemicals were found to affect tubulin polymerisation at a concentration of c = 50 µM. Together with in silico virtual screening studies, these results suggest microtubule stabilisation as a possible anthelmintic target and mechanism of action. This work effectively advocates the consideration of C. alpina extracts and fractions for the development of herbal therapeutics against parasitic helminths.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4108"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-73958-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The alpine plant Cicerbita alpina (L.) Wallr., when grown as a sprout, is known as a bitter-tasting culinary delicacy. Recently it has also been reported to have anthelmintic activity, prompting further investigation into its mechanism of action. Liquid-liquid fractions were prepared from a methanolic extract of the aerial parts and were submitted in parallel to embryo development (ED), worm motility (WMT), and cytotoxicity assays for anthelmintic and toxicity evaluations. The anthelminthic assays revealed the more polar fractions to be most active against Ascaridia galli embryos (BuOH | 68% ED | c = 500 µg/ml and EtOAc | 65% ED | c = 500 µg/ml) and Caenorhabditis elegans adult worms (BuOH | 49% WMT | c = 150 µg/ml and EtOAc | 74% WMT | c = 150 µg/ml) suggesting the fraction's constituents possess dual anthelmintic activity against multiple life-cycle stages (i.e., eggs, worms) of helminths. Additionally, the BuOH fraction was non-cytotoxic to human cell-lines. Subsequent FCC and SEC derived subfractions were submitted to the anthelmintic assay workflow and the enriched subfractions B1 and E3.8, phytochemically assigned as 11-β,13-dihydrolactucin and luteolin, demonstrated bioactivity against the embryo phenotype (B1 | 58% ED | c = 1.8 µM and E3.8 | 46% ED | c = 1.7 µM) within range of the flubendazole control. Furthermore, luteolin was found to inhibit C. elegans egg hatching (luteolin | 65% EH | c = 10 µM | t = 10 h) within the range of the control albendazole. Both identified anthelmintic phytochemicals were found to affect tubulin polymerisation at a concentration of c = 50 µM. Together with in silico virtual screening studies, these results suggest microtubule stabilisation as a possible anthelmintic target and mechanism of action. This work effectively advocates the consideration of C. alpina extracts and fractions for the development of herbal therapeutics against parasitic helminths.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.