Preparation of the titanium-based composite coagulant PTFS and its coagulation performance on nanoparticles.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Zihan Wang, Jingqian Ma, Kun Wu, Wenquan Sun, Yongjun Sun
{"title":"Preparation of the titanium-based composite coagulant PTFS and its coagulation performance on nanoparticles.","authors":"Zihan Wang, Jingqian Ma, Kun Wu, Wenquan Sun, Yongjun Sun","doi":"10.1002/wer.70023","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a titanium-based coagulant, (i.e., PTFS), with a three-dimensional spatial mesh structure was prepared for the coagulation removal of polystyrene (PS) and titanium dioxide (TiO<sub>2</sub>) nanoparticles in water. The results of scanning electron microscopy, TGA-DSC, Fourier infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy characterization showed that the PTFS was not a simple mixture of raw materials and a chemical reaction occurred, thereby generating new chemically connected bonds. The optimum removal of PS could reach 92.5% at the dosage of 0.6 mg/L, initial concentration of 70 mg/L, pH of 7, stirring intensity of 350 rpm, settling time of 60 min, and kaolin concentration of 70 mg/L. The best removal rate of TiO<sub>2</sub> could reach 95.3% when the dosage was 0.8 mg/L, the initial concentration was 70 mg/L, the pH was 7, the stirring intensity was 350 rpm, the settling time was 60 min, and the kaolin concentration was 50 mg/L. The flocs produced by PTFS were large and dense. In the early stage of coagulation, the flocculation mechanism was dominated by electroneutralization, and in the middle and late stages of coagulation, adsorption, bridging, and netting were dominated. This study aims to provide a reference for the removal of nanopollutants by coagulation in the actual water treatment process. PRACTITIONER POINTS: A titanium-based coagulant PTFS with a three-dimensional spatial mesh structure was prepared. PTFS effectively removes nano-PS and nano-TiO<sub>2</sub> from water. The flocs produced by PTFS were large and dense flocs. Removal of PS and TiO<sub>2</sub> by PFTS has been a combination of multiple coagulation mechanisms.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"97 2","pages":"e70023"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.70023","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a titanium-based coagulant, (i.e., PTFS), with a three-dimensional spatial mesh structure was prepared for the coagulation removal of polystyrene (PS) and titanium dioxide (TiO2) nanoparticles in water. The results of scanning electron microscopy, TGA-DSC, Fourier infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy characterization showed that the PTFS was not a simple mixture of raw materials and a chemical reaction occurred, thereby generating new chemically connected bonds. The optimum removal of PS could reach 92.5% at the dosage of 0.6 mg/L, initial concentration of 70 mg/L, pH of 7, stirring intensity of 350 rpm, settling time of 60 min, and kaolin concentration of 70 mg/L. The best removal rate of TiO2 could reach 95.3% when the dosage was 0.8 mg/L, the initial concentration was 70 mg/L, the pH was 7, the stirring intensity was 350 rpm, the settling time was 60 min, and the kaolin concentration was 50 mg/L. The flocs produced by PTFS were large and dense. In the early stage of coagulation, the flocculation mechanism was dominated by electroneutralization, and in the middle and late stages of coagulation, adsorption, bridging, and netting were dominated. This study aims to provide a reference for the removal of nanopollutants by coagulation in the actual water treatment process. PRACTITIONER POINTS: A titanium-based coagulant PTFS with a three-dimensional spatial mesh structure was prepared. PTFS effectively removes nano-PS and nano-TiO2 from water. The flocs produced by PTFS were large and dense flocs. Removal of PS and TiO2 by PFTS has been a combination of multiple coagulation mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信