Sm-Nd Isotope Data Compilation from Geoscientific Literature Using an Automated Tabular Extraction Method.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhixin Guo, Tao Wang, Chaoyang Wang, Jianping Zhou, Guanjie Zheng, Xinbing Wang, Chenghu Zhou
{"title":"Sm-Nd Isotope Data Compilation from Geoscientific Literature Using an Automated Tabular Extraction Method.","authors":"Zhixin Guo, Tao Wang, Chaoyang Wang, Jianping Zhou, Guanjie Zheng, Xinbing Wang, Chenghu Zhou","doi":"10.1038/s41597-024-04229-5","DOIUrl":null,"url":null,"abstract":"<p><p>The rare earth elements Sm and Nd significantly address fundamental questions about crustal growth, such as its spatiotemporal evolution and the interplay between orogenesis and crustal accretion. Their relative immobility during high-grade metamorphism makes the Sm-Nd isotopic system crucial for inferring crustal formation times. Historically, data have been disseminated sporadically in the scientific literature due to complicated and costly sampling procedures, resulting in a fragmented knowledge base. However, the scattering of critical geoscience data across multiple publications poses significant challenges regarding human capital and time. In response, we present an automated tabular extraction method for harvesting tabular geoscience data. We collect 10,624 Sm-Nd data entries from 9,138 tables in over 20,000 geoscience publications using this method. We manually selected 2,118 data points from it to supplement the previously constructed global Sm-Nd dataset, increasing its sample count by over 20%. Our automatic data collection methodology enhances the efficiency of data acquisition processes spanning various scientific domains.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"203"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791030/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04229-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The rare earth elements Sm and Nd significantly address fundamental questions about crustal growth, such as its spatiotemporal evolution and the interplay between orogenesis and crustal accretion. Their relative immobility during high-grade metamorphism makes the Sm-Nd isotopic system crucial for inferring crustal formation times. Historically, data have been disseminated sporadically in the scientific literature due to complicated and costly sampling procedures, resulting in a fragmented knowledge base. However, the scattering of critical geoscience data across multiple publications poses significant challenges regarding human capital and time. In response, we present an automated tabular extraction method for harvesting tabular geoscience data. We collect 10,624 Sm-Nd data entries from 9,138 tables in over 20,000 geoscience publications using this method. We manually selected 2,118 data points from it to supplement the previously constructed global Sm-Nd dataset, increasing its sample count by over 20%. Our automatic data collection methodology enhances the efficiency of data acquisition processes spanning various scientific domains.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信