Synthetic data generation in motion analysis: A generative deep learning framework.

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Mattia Perrone, Steven P Mell, John T Martin, Shane J Nho, Scott Simmons, Philip Malloy
{"title":"Synthetic data generation in motion analysis: A generative deep learning framework.","authors":"Mattia Perrone, Steven P Mell, John T Martin, Shane J Nho, Scott Simmons, Philip Malloy","doi":"10.1177/09544119251315877","DOIUrl":null,"url":null,"abstract":"<p><p>Generative deep learning has emerged as a promising data augmentation technique in recent years. This approach becomes particularly valuable in areas such as motion analysis, where it is challenging to collect substantial amounts of data. The objective of the current study is to introduce a data augmentation strategy that relies on a variational autoencoder to generate synthetic data of kinetic and kinematic variables. The kinematic and kinetic variables consist of hip and knee joint angles and moments, respectively, in both sagittal and frontal plane, and ground reaction forces. Statistical parametric mapping (SPM) did not detect significant differences between real and synthetic data for each of the biomechanical variables considered. To further evaluate the effectiveness of this approach, a long-short term model (LSTM) was trained both only on real data (R) and on the combination of real and synthetic data (R&S); the performance of each of these two trained models was then assessed on real test data unseen during training. The principal findings included achieving comparable results in terms of nRMSE when predicting knee joint moments in the frontal (R&S: 9.86% vs R: 10.72%) and sagittal plane (R&S: 9.21% vs R: 9.75%), and hip joint moments in the frontal (R&S: 16.93% vs R: 16.79%) and sagittal plane (R&S: 13.29% vs R: 14.60%). The main novelty of this study lies in introducing an effective data augmentation approach in motion analysis settings.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"9544119251315877"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251315877","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Generative deep learning has emerged as a promising data augmentation technique in recent years. This approach becomes particularly valuable in areas such as motion analysis, where it is challenging to collect substantial amounts of data. The objective of the current study is to introduce a data augmentation strategy that relies on a variational autoencoder to generate synthetic data of kinetic and kinematic variables. The kinematic and kinetic variables consist of hip and knee joint angles and moments, respectively, in both sagittal and frontal plane, and ground reaction forces. Statistical parametric mapping (SPM) did not detect significant differences between real and synthetic data for each of the biomechanical variables considered. To further evaluate the effectiveness of this approach, a long-short term model (LSTM) was trained both only on real data (R) and on the combination of real and synthetic data (R&S); the performance of each of these two trained models was then assessed on real test data unseen during training. The principal findings included achieving comparable results in terms of nRMSE when predicting knee joint moments in the frontal (R&S: 9.86% vs R: 10.72%) and sagittal plane (R&S: 9.21% vs R: 9.75%), and hip joint moments in the frontal (R&S: 16.93% vs R: 16.79%) and sagittal plane (R&S: 13.29% vs R: 14.60%). The main novelty of this study lies in introducing an effective data augmentation approach in motion analysis settings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信