Grace C McKenzie-Smith, Scott W Wolf, Julien F Ayroles, Joshua W Shaevitz
{"title":"Capturing continuous, long timescale behavioral changes in Drosophila melanogaster postural data.","authors":"Grace C McKenzie-Smith, Scott W Wolf, Julien F Ayroles, Joshua W Shaevitz","doi":"10.1371/journal.pcbi.1012753","DOIUrl":null,"url":null,"abstract":"<p><p>Animal behavior spans many timescales, from short, seconds-scale actions to daily rhythms over many hours to life-long changes during aging. To access longer timescales of behavior, we continuously recorded individual Drosophila melanogaster at 100 frames per second for up to 7 days at a time in featureless arenas on sucrose-agarose media. We use the deep learning framework SLEAP to produce a full-body postural dataset for 47 individuals resulting in nearly 2 billion pose instances. We identify stereotyped behaviors such as grooming, proboscis extension, and locomotion and use the resulting ethograms to explore how the flies' behavior varies across time of day and days in the experiment. We find distinct daily patterns in all stereotyped behaviors, adding specific information about trends in different grooming modalities, proboscis extension duration, and locomotion speed to what is known about the D. melanogaster circadian cycle. Using our holistic measurements of behavior, we find that the hour after dawn is a unique time point in the flies' daily pattern of behavior, and that the behavioral composition of this hour tracks well with other indicators of health such as locomotion speed and the fraction of time spend moving vs. resting. The method, data, and analysis presented here give us a new and clearer picture of D. melanogaster behavior across timescales, revealing novel features that hint at unexplored underlying biological mechanisms.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 2","pages":"e1012753"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012753","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Animal behavior spans many timescales, from short, seconds-scale actions to daily rhythms over many hours to life-long changes during aging. To access longer timescales of behavior, we continuously recorded individual Drosophila melanogaster at 100 frames per second for up to 7 days at a time in featureless arenas on sucrose-agarose media. We use the deep learning framework SLEAP to produce a full-body postural dataset for 47 individuals resulting in nearly 2 billion pose instances. We identify stereotyped behaviors such as grooming, proboscis extension, and locomotion and use the resulting ethograms to explore how the flies' behavior varies across time of day and days in the experiment. We find distinct daily patterns in all stereotyped behaviors, adding specific information about trends in different grooming modalities, proboscis extension duration, and locomotion speed to what is known about the D. melanogaster circadian cycle. Using our holistic measurements of behavior, we find that the hour after dawn is a unique time point in the flies' daily pattern of behavior, and that the behavioral composition of this hour tracks well with other indicators of health such as locomotion speed and the fraction of time spend moving vs. resting. The method, data, and analysis presented here give us a new and clearer picture of D. melanogaster behavior across timescales, revealing novel features that hint at unexplored underlying biological mechanisms.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.