Faithful Interpretation of Protein Structures through Weighted Persistent Homology Improves Evolutionary Distance Estimation.

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Léa Bou Dagher, Dominique Madern, Philippe Malbos, Céline Brochier-Armanet
{"title":"Faithful Interpretation of Protein Structures through Weighted Persistent Homology Improves Evolutionary Distance Estimation.","authors":"Léa Bou Dagher, Dominique Madern, Philippe Malbos, Céline Brochier-Armanet","doi":"10.1093/molbev/msae271","DOIUrl":null,"url":null,"abstract":"<p><p>Phylogenetic inference is mainly based on sequence analysis and requires reliable alignments. This can be challenging, especially when sequences are highly divergent. In this context, the use of three-dimensional protein structures is a promising alternative. In a recent study, we introduced an original topological data analysis method based on persistent homology to estimate the evolutionary distances from structures. The method was successfully tested on 518 protein families representing 22,940 predicted structures. However, as anticipated, the reliability of the estimated evolutionary distances was impacted by the quality of the predicted structures and the presence of indels in the proteins. This paper introduces a new topological descriptor, called bio-topological marker (BTM), which provides a more faithful description of the structures, a topological analysis for estimating evolutionary distances from BTMs, and a new weight-filtering method adapted to protein structures. These new developments significantly improve the estimation of evolutionary distances and phylogenies inferred from structures.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789942/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae271","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phylogenetic inference is mainly based on sequence analysis and requires reliable alignments. This can be challenging, especially when sequences are highly divergent. In this context, the use of three-dimensional protein structures is a promising alternative. In a recent study, we introduced an original topological data analysis method based on persistent homology to estimate the evolutionary distances from structures. The method was successfully tested on 518 protein families representing 22,940 predicted structures. However, as anticipated, the reliability of the estimated evolutionary distances was impacted by the quality of the predicted structures and the presence of indels in the proteins. This paper introduces a new topological descriptor, called bio-topological marker (BTM), which provides a more faithful description of the structures, a topological analysis for estimating evolutionary distances from BTMs, and a new weight-filtering method adapted to protein structures. These new developments significantly improve the estimation of evolutionary distances and phylogenies inferred from structures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信