Mitigation of salinity stress in sunflower plants (Helianthus annuus L.) through topical application of salicylic acid and silver nanoparticles.

IF 3.4 3区 生物学 Q1 PLANT SCIENCES
Muhammad Shahbaz, Tauseef Anwar, Sammer Fatima, Nilgün Onursal, Huma Qureshi, Waseem Akhtar Qureshi, Naimat Ullah, Walid Soufan, Wajid Zaman
{"title":"Mitigation of salinity stress in sunflower plants (<i>Helianthus annuus</i> L.) through topical application of salicylic acid and silver nanoparticles.","authors":"Muhammad Shahbaz, Tauseef Anwar, Sammer Fatima, Nilgün Onursal, Huma Qureshi, Waseem Akhtar Qureshi, Naimat Ullah, Walid Soufan, Wajid Zaman","doi":"10.1007/s12298-024-01535-5","DOIUrl":null,"url":null,"abstract":"<p><p>Salinity stress poses a significant threat to sunflower (<i>Helianthus annuus</i> L.) by impairing water and nutrient uptake, disrupting cellular functions, and increasing oxidative damage. This study investigates the impact of Salicylic acid (SA) and silver nanoparticles (AgNPs) on growth, biochemical parameters, and oxidative stress markers in salt-stressed sunflower plants. Experiments were conducted in a controlled greenhouse environment at the Islamia University of Bahawalpur, Pakistan, using sunflower seeds (Orisun 701). AgNPs were synthesized using neem leaf extract and characterized through SEM, FTIR, zeta potential analysis, and XRD. Treatments included foliar application of SA (10 mM) and AgNPs (40 ppm) under 100 mM sodium chloride-induced salt stress. Growth metrics, antioxidant enzyme activities, chlorophyll content, and oxidative stress markers (H₂O₂ and MDA levels) were measured to evaluate treatment effects. The SA and AgNP treatments improved sunflower growth under salt stress, with AgNPs showing a greater impact. SA increased shoot fresh weight by 16.4%, root fresh weight by 6.9%, and chlorophyll content by 12.7%, while AgNPs enhanced shoot fresh weight by 30.5%, root fresh weight by 11.6%, and total chlorophyll by 80%. AgNPs also significantly reduced H₂O₂ by 42.7% and MDA by 34.6%, indicating reduced oxidative damage. Cluster analysis further demonstrated the distinct physiological responses elicited by AgNPs compared to SA. SA and AgNPs enhance sunflower resilience to salinity, with AgNPs showing a particularly strong effect on chlorophyll content and oxidative stress markers. These findings highlight the potential of SA and AgNPs as effective treatments for salt stress, suggesting further research across different crops and environments.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 1","pages":"27-40"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787077/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01535-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Salinity stress poses a significant threat to sunflower (Helianthus annuus L.) by impairing water and nutrient uptake, disrupting cellular functions, and increasing oxidative damage. This study investigates the impact of Salicylic acid (SA) and silver nanoparticles (AgNPs) on growth, biochemical parameters, and oxidative stress markers in salt-stressed sunflower plants. Experiments were conducted in a controlled greenhouse environment at the Islamia University of Bahawalpur, Pakistan, using sunflower seeds (Orisun 701). AgNPs were synthesized using neem leaf extract and characterized through SEM, FTIR, zeta potential analysis, and XRD. Treatments included foliar application of SA (10 mM) and AgNPs (40 ppm) under 100 mM sodium chloride-induced salt stress. Growth metrics, antioxidant enzyme activities, chlorophyll content, and oxidative stress markers (H₂O₂ and MDA levels) were measured to evaluate treatment effects. The SA and AgNP treatments improved sunflower growth under salt stress, with AgNPs showing a greater impact. SA increased shoot fresh weight by 16.4%, root fresh weight by 6.9%, and chlorophyll content by 12.7%, while AgNPs enhanced shoot fresh weight by 30.5%, root fresh weight by 11.6%, and total chlorophyll by 80%. AgNPs also significantly reduced H₂O₂ by 42.7% and MDA by 34.6%, indicating reduced oxidative damage. Cluster analysis further demonstrated the distinct physiological responses elicited by AgNPs compared to SA. SA and AgNPs enhance sunflower resilience to salinity, with AgNPs showing a particularly strong effect on chlorophyll content and oxidative stress markers. These findings highlight the potential of SA and AgNPs as effective treatments for salt stress, suggesting further research across different crops and environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
126
期刊介绍: Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信