Aneeza Ishfaq, Irfan Haidri, Usman Shafqat, Imran Khan, Muhammad Iqbal, Faisal Mahmood, Muhammad Umair Hassan
{"title":"Impact of biogenic zinc oxide nanoparticles on physiological and biochemical attributes of pea (<i>Pisum sativum</i> L.) under drought stress.","authors":"Aneeza Ishfaq, Irfan Haidri, Usman Shafqat, Imran Khan, Muhammad Iqbal, Faisal Mahmood, Muhammad Umair Hassan","doi":"10.1007/s12298-024-01537-3","DOIUrl":null,"url":null,"abstract":"<p><p>Drought is a significant environmental issue affecting crop yield, nutrient content, and human food. This study investigates the potential of zinc oxide nanoparticles (ZnO-NPs) in mitigating the negative effects of drought stress on pea (<i>Pisum sativum</i> L.). ZnO-NPs were applied through seed priming, foliar application, and soil drenching at 0, 50, 100, and 150 ppm concentrations. Our findings showed that these three methods were more effective at different concentrations of ZnO-NPs. Seed priming at 50 ppm, foliar application at 100 ppm, and soil drenching at 150 ppm performed best in mitigating drought stress. Results showed that primed seeds with zinc oxide nanoparticles (50 ppm) have improved the physical growth, physiological, antioxidant, and mineral content by 35%, 45%, 57%, and 13% under drought stress as compared to control. It was observed that foliar application of ZnO-NPs (100 ppm) has enhanced physical growth, physiological, antioxidant, and mineral content by 43%, 54%, 64%, and 15% under drought stress as compared to the control. However, application of ZnO-NPs (150 ppm) in soli drenching improved the physical growth, physiological, antioxidant, and mineral content by 47%, 60%, 64%, and 16% under drought stress as compared to control. Moreover, ZnO-NPs amendments at different concentrations significantly decreased osmotic stress. This study provides innovative evidence of ZnO-NPs to mitigate drought stress in plants through various applications, revealing their potential to boost resilience in agriculture in case of drought stress conditions.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-024-01537-3.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 1","pages":"11-26"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787093/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01537-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Drought is a significant environmental issue affecting crop yield, nutrient content, and human food. This study investigates the potential of zinc oxide nanoparticles (ZnO-NPs) in mitigating the negative effects of drought stress on pea (Pisum sativum L.). ZnO-NPs were applied through seed priming, foliar application, and soil drenching at 0, 50, 100, and 150 ppm concentrations. Our findings showed that these three methods were more effective at different concentrations of ZnO-NPs. Seed priming at 50 ppm, foliar application at 100 ppm, and soil drenching at 150 ppm performed best in mitigating drought stress. Results showed that primed seeds with zinc oxide nanoparticles (50 ppm) have improved the physical growth, physiological, antioxidant, and mineral content by 35%, 45%, 57%, and 13% under drought stress as compared to control. It was observed that foliar application of ZnO-NPs (100 ppm) has enhanced physical growth, physiological, antioxidant, and mineral content by 43%, 54%, 64%, and 15% under drought stress as compared to the control. However, application of ZnO-NPs (150 ppm) in soli drenching improved the physical growth, physiological, antioxidant, and mineral content by 47%, 60%, 64%, and 16% under drought stress as compared to control. Moreover, ZnO-NPs amendments at different concentrations significantly decreased osmotic stress. This study provides innovative evidence of ZnO-NPs to mitigate drought stress in plants through various applications, revealing their potential to boost resilience in agriculture in case of drought stress conditions.
Supplementary information: The online version contains supplementary material available at 10.1007/s12298-024-01537-3.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.