Identification of an RNA silencing suppressor encoded by an Indian citrus ringspot virus.

IF 3.4 3区 生物学 Q1 PLANT SCIENCES
Aniket Angira, V K Baranwal, Aashish Ranjan, Nandlal Choudhary
{"title":"Identification of an RNA silencing suppressor encoded by an Indian citrus ringspot virus.","authors":"Aniket Angira, V K Baranwal, Aashish Ranjan, Nandlal Choudhary","doi":"10.1007/s12298-024-01524-8","DOIUrl":null,"url":null,"abstract":"<p><p>Plant viruses encode RNA silencing suppressor (RSS) proteins to counter the induced antiviral defense, an RNAi silencing mechanism of the host. Indian citrus ringspot virus (ICRSV) causes the ringspot disease, which leads to significant yield loss of kinnow orange. The ICRSV genome contains six open reading frames (ORFs), however, the ORF encoding the potential RSS is not yet known. In this study, we have attempted to identify the RSS protein of ICRSV. To this end, ORF 2,3,4,5 and 6 were cloned into pCAMBIA1302 (35s-GFP) vector, followed by transformation of <i>Agrobacterium tumefaciens</i> and agro-infiltration into leaves of <i>Nicotiana benthamiana</i> 16c line. Only the leaves infiltrated with 35s-GFP/ORF5 showed a GFP fluorescence signal similar to 35s-GFP/P19, a well-studied positive RSS. Usually, the induced host RNAi silencing is supposed to cleave the expressed GFP-RNA. However, it is suspected that ORF5-encoded protein was able to suppress the host silencing mechanism, leading to the retention of the GFP fluorescence signal. This finding was further supported by beta-glucuronidase (GUS) histochemical assays by infiltrating the construct expressing ORF5-GUS under 35s promoter in the leaves of <i>N. benthamiana</i>. Leaves infiltrated with 35s-GUS/ORF5 formed diX-indigo precipitate similar to leaves infiltrated with, indicating the RSS activity of ICRSV. Later, semi-quantitative PCR and quantitative reverse transcription PCR <b>(</b>qRT-PCR) assays showed a higher expression of GFP and GUS in ORF5 agro-infiltrated leaves. Together, these results suggest that ORF5 encoded protein has the potential RSS function of ICRSV which successfully suppresses host RNAi silencing mechanism.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 1","pages":"93-104"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787110/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-024-01524-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plant viruses encode RNA silencing suppressor (RSS) proteins to counter the induced antiviral defense, an RNAi silencing mechanism of the host. Indian citrus ringspot virus (ICRSV) causes the ringspot disease, which leads to significant yield loss of kinnow orange. The ICRSV genome contains six open reading frames (ORFs), however, the ORF encoding the potential RSS is not yet known. In this study, we have attempted to identify the RSS protein of ICRSV. To this end, ORF 2,3,4,5 and 6 were cloned into pCAMBIA1302 (35s-GFP) vector, followed by transformation of Agrobacterium tumefaciens and agro-infiltration into leaves of Nicotiana benthamiana 16c line. Only the leaves infiltrated with 35s-GFP/ORF5 showed a GFP fluorescence signal similar to 35s-GFP/P19, a well-studied positive RSS. Usually, the induced host RNAi silencing is supposed to cleave the expressed GFP-RNA. However, it is suspected that ORF5-encoded protein was able to suppress the host silencing mechanism, leading to the retention of the GFP fluorescence signal. This finding was further supported by beta-glucuronidase (GUS) histochemical assays by infiltrating the construct expressing ORF5-GUS under 35s promoter in the leaves of N. benthamiana. Leaves infiltrated with 35s-GUS/ORF5 formed diX-indigo precipitate similar to leaves infiltrated with, indicating the RSS activity of ICRSV. Later, semi-quantitative PCR and quantitative reverse transcription PCR (qRT-PCR) assays showed a higher expression of GFP and GUS in ORF5 agro-infiltrated leaves. Together, these results suggest that ORF5 encoded protein has the potential RSS function of ICRSV which successfully suppresses host RNAi silencing mechanism.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
126
期刊介绍: Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信