How can Blood Flow Restriction Exercise be Utilised for the Management of Persistent Pain Following Complex Injuries in Military Personnel? A Narrative Review.

IF 4.1 2区 医学 Q1 SPORT SCIENCES
Luke Gray, Peter Ladlow, Russell J Coppack, Robyn P Cassidy, Lynn Kelly, Sarah Lewis, Nick Caplan, Robert Barker-Davies, Alexander N Bennett, Luke Hughes
{"title":"How can Blood Flow Restriction Exercise be Utilised for the Management of Persistent Pain Following Complex Injuries in Military Personnel? A Narrative Review.","authors":"Luke Gray, Peter Ladlow, Russell J Coppack, Robyn P Cassidy, Lynn Kelly, Sarah Lewis, Nick Caplan, Robert Barker-Davies, Alexander N Bennett, Luke Hughes","doi":"10.1186/s40798-024-00804-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Persistent pain is a complicated phenomenon associated with a wide array of complex pathologies and conditions (e.g., complex regional pain syndrome, non-freezing cold injury), leading to extensive disability and reduced physical function. Conventional resistance training is commonly contraindicated in load compromised and/or persistent pain populations, compromising rehabilitation progression and potentially leading to extensive pharmacological intervention, invasive procedures, and reduced occupational status. The management of persistent pain and utility of adjunct therapies has become a clinical and research priority within numerous healthcare settings, including defence medical services.</p><p><strong>Main body: </strong>Blood flow restriction (BFR) exercise has demonstrated beneficial morphological and physiological adaptions in load-compromised populations, as well as being able to elicit acute hypoalgesia. The aims of this narrative review are to: (1) explore the use of BFR exercise to elicit hypoalgesia; (2) briefly review the mechanisms of BFR-induced hypoalgesia; (3) discuss potential implications and applications of BFR during the rehabilitation of complex conditions where persistent pain is the primary limiting factor to progress, within defence rehabilitation healthcare settings. The review found BFR application is a feasible intervention across numerous load-compromised clinical populations (e.g., post-surgical, post-traumatic osteoarthritis), and there is mechanistic rationale for use in persistent pain pathologies. Utilisation may also be pleiotropic in nature by ameliorating pathological changes while also modulating pain response. Numerous application methods (e.g., with aerobic exercise, passive application, or resistance training) allow practitioners to cater for specific limitations (e.g., passive, or contralateral application with kinesiophobia) in clinical populations. Additionally, the low-mechanical load nature of BFR exercise may allow for high-frequency use within residential military rehabilitation, providing a platform for conventional resistance training thereafter.</p><p><strong>Conclusion: </strong>Future research needs to examine the differences in pain modulation between persistent pain and pain-free populations with BFR application, supporting the investigation of mechanisms for BFR-induced hypoalgesia, the dose-response relationship between BFR-exercise and pain modulation, and the efficacy and effectiveness of BFR application in complex musculoskeletal and persistent pain populations.</p>","PeriodicalId":21788,"journal":{"name":"Sports Medicine - Open","volume":"11 1","pages":"13"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine - Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40798-024-00804-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Persistent pain is a complicated phenomenon associated with a wide array of complex pathologies and conditions (e.g., complex regional pain syndrome, non-freezing cold injury), leading to extensive disability and reduced physical function. Conventional resistance training is commonly contraindicated in load compromised and/or persistent pain populations, compromising rehabilitation progression and potentially leading to extensive pharmacological intervention, invasive procedures, and reduced occupational status. The management of persistent pain and utility of adjunct therapies has become a clinical and research priority within numerous healthcare settings, including defence medical services.

Main body: Blood flow restriction (BFR) exercise has demonstrated beneficial morphological and physiological adaptions in load-compromised populations, as well as being able to elicit acute hypoalgesia. The aims of this narrative review are to: (1) explore the use of BFR exercise to elicit hypoalgesia; (2) briefly review the mechanisms of BFR-induced hypoalgesia; (3) discuss potential implications and applications of BFR during the rehabilitation of complex conditions where persistent pain is the primary limiting factor to progress, within defence rehabilitation healthcare settings. The review found BFR application is a feasible intervention across numerous load-compromised clinical populations (e.g., post-surgical, post-traumatic osteoarthritis), and there is mechanistic rationale for use in persistent pain pathologies. Utilisation may also be pleiotropic in nature by ameliorating pathological changes while also modulating pain response. Numerous application methods (e.g., with aerobic exercise, passive application, or resistance training) allow practitioners to cater for specific limitations (e.g., passive, or contralateral application with kinesiophobia) in clinical populations. Additionally, the low-mechanical load nature of BFR exercise may allow for high-frequency use within residential military rehabilitation, providing a platform for conventional resistance training thereafter.

Conclusion: Future research needs to examine the differences in pain modulation between persistent pain and pain-free populations with BFR application, supporting the investigation of mechanisms for BFR-induced hypoalgesia, the dose-response relationship between BFR-exercise and pain modulation, and the efficacy and effectiveness of BFR application in complex musculoskeletal and persistent pain populations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sports Medicine - Open
Sports Medicine - Open SPORT SCIENCES-
CiteScore
7.00
自引率
4.30%
发文量
142
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信