{"title":"Reactive oxygen species are involved in inhibition of photoreactivation of Staphylococcus aureus irradiated with 222-nm Far ultraviolet C.","authors":"Risako Fukushi, Kouji Narita, Kyosuke Yamane, Toru Koi, Krisana Asano, Akio Nakane","doi":"10.1111/php.14065","DOIUrl":null,"url":null,"abstract":"<p><p>Ultraviolet-C (UV-C) at a wavelength of 254 nm is used for disinfection but cannot be used in dwelling space because it is harmful to the human body, while 222-nm Far UV-C shows germicidal effect and poses little hazardous effect to human. Formation of cyclobutane pyrimidine dimers (CPD) of DNA is a main mechanism of UV-C germicidal effect. CPD formed by irradiation with 254-nm UV-C is repaired and bacterial proliferation is recovered by photoreactivation. In this study, we investigated photoreactivation of Staphylococcus aureus irradiated with 222-nm Far UV-C. The proliferative effect of 222-nm Far UV-C irradiated S. aureus by photoreactivation was inferior to that of irradiated with 254-nm UV-C. The 254-nm UV-C wavelength and 222-nm Far UV-C induced CPD in S. aureus cells, and the same level of CPD was repaired in cells irradiated with either UV-C after photoreactivation. It has been reported that UV-C induces generation of reactive oxygen species (ROS) in bacteria and that ROS oxidize and inactivate a variety of biomolecules in bacteria. This study showed that more ROS-producing S. aureus were observed after irradiation with 222-nm Far UV-C compared with 254-nm UV-C. These results indicate that ROS may be involved in lower recovery of 222-nm Far UV-C irradiated S. aureus by photoreactivation.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.14065","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ultraviolet-C (UV-C) at a wavelength of 254 nm is used for disinfection but cannot be used in dwelling space because it is harmful to the human body, while 222-nm Far UV-C shows germicidal effect and poses little hazardous effect to human. Formation of cyclobutane pyrimidine dimers (CPD) of DNA is a main mechanism of UV-C germicidal effect. CPD formed by irradiation with 254-nm UV-C is repaired and bacterial proliferation is recovered by photoreactivation. In this study, we investigated photoreactivation of Staphylococcus aureus irradiated with 222-nm Far UV-C. The proliferative effect of 222-nm Far UV-C irradiated S. aureus by photoreactivation was inferior to that of irradiated with 254-nm UV-C. The 254-nm UV-C wavelength and 222-nm Far UV-C induced CPD in S. aureus cells, and the same level of CPD was repaired in cells irradiated with either UV-C after photoreactivation. It has been reported that UV-C induces generation of reactive oxygen species (ROS) in bacteria and that ROS oxidize and inactivate a variety of biomolecules in bacteria. This study showed that more ROS-producing S. aureus were observed after irradiation with 222-nm Far UV-C compared with 254-nm UV-C. These results indicate that ROS may be involved in lower recovery of 222-nm Far UV-C irradiated S. aureus by photoreactivation.
期刊介绍:
Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.