Exosomal mir-126-3p derived from endothelial cells induces ion channel dysfunction by targeting RGS3 signaling in cardiomyocytes: a novel mechanism in Takotsubo cardiomyopathy.

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING
Xuehui Fan, Guoqiang Yang, Yinuo Wang, Haojie Shi, Katja Nitschke, Katherine Sattler, Mohammad Abumayyaleh, Lukas Cyganek, Philipp Nuhn, Thomas Worst, Bin Liao, Gergana Dobreva, Daniel Duerschmied, Xiaobo Zhou, Ibrahim El-Battrawy, Ibrahim Akin
{"title":"Exosomal mir-126-3p derived from endothelial cells induces ion channel dysfunction by targeting RGS3 signaling in cardiomyocytes: a novel mechanism in Takotsubo cardiomyopathy.","authors":"Xuehui Fan, Guoqiang Yang, Yinuo Wang, Haojie Shi, Katja Nitschke, Katherine Sattler, Mohammad Abumayyaleh, Lukas Cyganek, Philipp Nuhn, Thomas Worst, Bin Liao, Gergana Dobreva, Daniel Duerschmied, Xiaobo Zhou, Ibrahim El-Battrawy, Ibrahim Akin","doi":"10.1186/s13287-025-04157-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Takotsubo cardiomyopathy (TTC) is marked by an acute, transient, and reversible left ventricular systolic dysfunction triggered by stress, with endothelial dysfunction being one of its pathophysiological mechanisms. However, the precise molecular mechanism underlying the interaction between endothelial cells and cardiomyocytes during TTC remains unclear. This study reveals that exosomal miRNAs derived from endothelial cells exposed to catecholamine contribute to ion channel dysfunction in the setting of TTC.</p><p><strong>Methods: </strong>Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were treated with epinephrine (Epi) or exosomes (Exo) from Epi-treated human cardiac microvascular endothelial cells (HCMECs) or Exo derived from HCMECs transfected with miR-126-3p. The immunofluorescence staining, flow cytometry, qPCR, single-cell contraction, intracellular calcium transients, patch-clamp, dual luciferase reporter assay and western blot were performed for the study.</p><p><strong>Results: </strong>Modeling TTC with high doses of epinephrine (Epi) treatment in hiPSC-CMs shows suppression of depolarization velocity (Vmax), prolongation of action potential duration (APD), and induction of arrhythmic events. Exo derived from HCMECs treated with Epi (Epi-exo) mimicked or enhanced the effects of Epi. Epi exposure led to elevated levels of miR-126-3p in both HCMECs and their exosomes. Exo enriched with miR-126-3p demonstrated similar effects as Epi-exo, establishing the crucial role of miR-126-3p in the mechanism of Epi-exo. Dual luciferase reporter assay coupled with gene mutation techniques identified that miR-126-3p was found to target the regulator of G-protein signaling 3 (RGS3) gene. Western blot and qPCR analyses confirmed that miR-126-3p-mimic reduced RGS3 expression in both HCMECs and hiPSC-CMs, indicating miR-126-3p inhibits RGS3 signaling. Additionally, miR-126-3p levels were significantly higher in the serum of TTC patients compared to healthy controls and patients who had recovered from TTC.</p><p><strong>Conclusions: </strong>Our study is the first to reveal that exosomal miR-126-3p, originating from endothelial cells, contributes to ion channel dysfunction by regulating RGS3 signaling in cardiomyocytes. These findings provide new perspectives on the pathogenesis of TTC and suggest potential therapeutic targets for treatment.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"36"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792229/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04157-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Takotsubo cardiomyopathy (TTC) is marked by an acute, transient, and reversible left ventricular systolic dysfunction triggered by stress, with endothelial dysfunction being one of its pathophysiological mechanisms. However, the precise molecular mechanism underlying the interaction between endothelial cells and cardiomyocytes during TTC remains unclear. This study reveals that exosomal miRNAs derived from endothelial cells exposed to catecholamine contribute to ion channel dysfunction in the setting of TTC.

Methods: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were treated with epinephrine (Epi) or exosomes (Exo) from Epi-treated human cardiac microvascular endothelial cells (HCMECs) or Exo derived from HCMECs transfected with miR-126-3p. The immunofluorescence staining, flow cytometry, qPCR, single-cell contraction, intracellular calcium transients, patch-clamp, dual luciferase reporter assay and western blot were performed for the study.

Results: Modeling TTC with high doses of epinephrine (Epi) treatment in hiPSC-CMs shows suppression of depolarization velocity (Vmax), prolongation of action potential duration (APD), and induction of arrhythmic events. Exo derived from HCMECs treated with Epi (Epi-exo) mimicked or enhanced the effects of Epi. Epi exposure led to elevated levels of miR-126-3p in both HCMECs and their exosomes. Exo enriched with miR-126-3p demonstrated similar effects as Epi-exo, establishing the crucial role of miR-126-3p in the mechanism of Epi-exo. Dual luciferase reporter assay coupled with gene mutation techniques identified that miR-126-3p was found to target the regulator of G-protein signaling 3 (RGS3) gene. Western blot and qPCR analyses confirmed that miR-126-3p-mimic reduced RGS3 expression in both HCMECs and hiPSC-CMs, indicating miR-126-3p inhibits RGS3 signaling. Additionally, miR-126-3p levels were significantly higher in the serum of TTC patients compared to healthy controls and patients who had recovered from TTC.

Conclusions: Our study is the first to reveal that exosomal miR-126-3p, originating from endothelial cells, contributes to ion channel dysfunction by regulating RGS3 signaling in cardiomyocytes. These findings provide new perspectives on the pathogenesis of TTC and suggest potential therapeutic targets for treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信