Tamara N Kimball, Reinier Wp Tack, Anna Chen, Savvina Prapiadou, Jasper R Senff, Benjamin Yq Tan, Sanjula D Singh, Susanne J van Veluw, Steven M Greenberg, Jonathan Rosand, Christopher D Anderson
{"title":"Genetics of intracerebral hemorrhage.","authors":"Tamara N Kimball, Reinier Wp Tack, Anna Chen, Savvina Prapiadou, Jasper R Senff, Benjamin Yq Tan, Sanjula D Singh, Susanne J van Veluw, Steven M Greenberg, Jonathan Rosand, Christopher D Anderson","doi":"10.1177/0271678X241310401","DOIUrl":null,"url":null,"abstract":"<p><p>Spontaneous intracerebral hemorrhage(ICH) represents a life-threatening form of stroke, marked by its impact on survival and quality of life. ICH can be categorized from monogenic disorders linked to causal germline variants in ICH-related genes to complex sporadic cases, highlighting the interaction among lifestyle factors, environmental influences, and genetic components in determining risk. Among sporadic ICH, the influence of these factors varies across ICH subtypes, evidenced by heritability rates of up to 73% for lobar ICH versus 34% for non-lobar ICH. This review presents an outline of the genetic landscape of ICH, covering both monogenic and sporadic forms. It highlights associations between ICH risk and genetic variants, including rare and common variants in genes such as <i>COL4A1, COL4A2, APOE, ACE, MTHFR,</i> and <i>PMF1</i>. However, replication has been constrained, and most findings originate from single-candidate gene studies, largely due to ancestry heterogeneity, small sample sizes, and scarce subtype-specific data. To bridge this gap, collaborative efforts like the International Stroke Genetic Consortium have been established. Additionally, the review discusses the emerging role of polygenic risk scores, Mendelian randomization, and the potential of genetic and omics research to elucidate causal pathobiology. Such insights could lead to preventive measures and personalized ICH treatment strategies.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241310401"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X241310401","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Spontaneous intracerebral hemorrhage(ICH) represents a life-threatening form of stroke, marked by its impact on survival and quality of life. ICH can be categorized from monogenic disorders linked to causal germline variants in ICH-related genes to complex sporadic cases, highlighting the interaction among lifestyle factors, environmental influences, and genetic components in determining risk. Among sporadic ICH, the influence of these factors varies across ICH subtypes, evidenced by heritability rates of up to 73% for lobar ICH versus 34% for non-lobar ICH. This review presents an outline of the genetic landscape of ICH, covering both monogenic and sporadic forms. It highlights associations between ICH risk and genetic variants, including rare and common variants in genes such as COL4A1, COL4A2, APOE, ACE, MTHFR, and PMF1. However, replication has been constrained, and most findings originate from single-candidate gene studies, largely due to ancestry heterogeneity, small sample sizes, and scarce subtype-specific data. To bridge this gap, collaborative efforts like the International Stroke Genetic Consortium have been established. Additionally, the review discusses the emerging role of polygenic risk scores, Mendelian randomization, and the potential of genetic and omics research to elucidate causal pathobiology. Such insights could lead to preventive measures and personalized ICH treatment strategies.
期刊介绍:
JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.