Deep learning and radiomics for gastric cancer serosal invasion: automated segmentation and multi-machine learning from two centers.

IF 2.7 3区 医学 Q3 ONCOLOGY
Hui Shang, Tao Feng, Dong Han, Fengying Liang, Bin Zhao, Lihang Xu, Zhendong Cao
{"title":"Deep learning and radiomics for gastric cancer serosal invasion: automated segmentation and multi-machine learning from two centers.","authors":"Hui Shang, Tao Feng, Dong Han, Fengying Liang, Bin Zhao, Lihang Xu, Zhendong Cao","doi":"10.1007/s00432-025-06117-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The objective of this study is to develop an automated method for segmenting spleen computed tomography (CT) images using a deep learning model. This approach is intended to address the limitations of manual segmentation, which is known to be susceptible to inter-observer variability. Subsequently, a prediction model of gastric cancer (GC) serosal invasion was constructed in conjunction with radiomics and deep learning features, and a nomogram was generated to explore the clinical guiding significance.</p><p><strong>Methods: </strong>This study enrolled 311 patients from two centers with pathologically confirmed of GC. we employed a deep learning model, U-Mamba, to obtain fully automatic segmentation of the spleen CT images. Subsequently, radiomics features and deep learning features were extracted from the entire spleen CT images, and significant features were identified through dimensionality reduction. The clinical features, radiomic features, and deep learning features were organized and integrated, and five machine learning methods were employed to develop 15 predictive models. Ultimately, the model exhibiting superior performance was presented in the form of a nomogram.</p><p><strong>Results: </strong>A total of 18 radiomics features, 30 deep learning features, and 1 clinical features were deemed valuable. The DLRA model demonstrated superior discriminative capacity relative to other models. A nomogram was constructed based on the logistic clinical model to facilitate the usage and verification of the clinical model.</p><p><strong>Conclusion: </strong>Radiomics and deep learning features derived from automated spleen segmentation to construct a nomogram demonstrate efficacy in predicting serosal invasion in GC. Concurrently, fully automated segmentation provides a novel and reproducible approach for radiomics research.</p>","PeriodicalId":15118,"journal":{"name":"Journal of Cancer Research and Clinical Oncology","volume":"151 2","pages":"60"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cancer Research and Clinical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00432-025-06117-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The objective of this study is to develop an automated method for segmenting spleen computed tomography (CT) images using a deep learning model. This approach is intended to address the limitations of manual segmentation, which is known to be susceptible to inter-observer variability. Subsequently, a prediction model of gastric cancer (GC) serosal invasion was constructed in conjunction with radiomics and deep learning features, and a nomogram was generated to explore the clinical guiding significance.

Methods: This study enrolled 311 patients from two centers with pathologically confirmed of GC. we employed a deep learning model, U-Mamba, to obtain fully automatic segmentation of the spleen CT images. Subsequently, radiomics features and deep learning features were extracted from the entire spleen CT images, and significant features were identified through dimensionality reduction. The clinical features, radiomic features, and deep learning features were organized and integrated, and five machine learning methods were employed to develop 15 predictive models. Ultimately, the model exhibiting superior performance was presented in the form of a nomogram.

Results: A total of 18 radiomics features, 30 deep learning features, and 1 clinical features were deemed valuable. The DLRA model demonstrated superior discriminative capacity relative to other models. A nomogram was constructed based on the logistic clinical model to facilitate the usage and verification of the clinical model.

Conclusion: Radiomics and deep learning features derived from automated spleen segmentation to construct a nomogram demonstrate efficacy in predicting serosal invasion in GC. Concurrently, fully automated segmentation provides a novel and reproducible approach for radiomics research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
2.80%
发文量
577
审稿时长
2 months
期刊介绍: The "Journal of Cancer Research and Clinical Oncology" publishes significant and up-to-date articles within the fields of experimental and clinical oncology. The journal, which is chiefly devoted to Original papers, also includes Reviews as well as Editorials and Guest editorials on current, controversial topics. The section Letters to the editors provides a forum for a rapid exchange of comments and information concerning previously published papers and topics of current interest. Meeting reports provide current information on the latest results presented at important congresses. The following fields are covered: carcinogenesis - etiology, mechanisms; molecular biology; recent developments in tumor therapy; general diagnosis; laboratory diagnosis; diagnostic and experimental pathology; oncologic surgery; and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信