The impact of beauvericin on rainbow trout intestinal epithelial cells at different temperatures and dosing methods.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Vivian R Dayeh, Anita Solhaug, Mark E Hamilton, Laura E Linton, Lucy E J Lee, Niels C Bols
{"title":"The impact of beauvericin on rainbow trout intestinal epithelial cells at different temperatures and dosing methods.","authors":"Vivian R Dayeh, Anita Solhaug, Mark E Hamilton, Laura E Linton, Lucy E J Lee, Niels C Bols","doi":"10.1007/s11626-025-01014-5","DOIUrl":null,"url":null,"abstract":"<p><p>Mycotoxins in aquatic feeds and their effects on fish are becoming more important in aquaculture, as fishmeal and fish oil in feeds are being replaced with more sustainable plant protein. Here, we investigated the potential of the mycotoxin, beauvericin (BEA), to impact the rainbow trout (RT) intestine by using cultures of the epithelial cell line, RTgutGC. BEA was dosed in different ways and exposed at temperatures ranging from 4 to 26 °C before being evaluated for cell viability by the metabolic reduction of Alamar Blue, by the accumulation of Neutral Red (lysosomal activity), cytotoxicity (CellTox Green), and for wound healing. BEA induces cell death in RTgutGC cells. The lysosomes are the main target (Neutral Red assay is the most sensitive) while cytotoxicity and plasma membrane rupture (CellTox Green) occur at considerably higher concentrations. BEA caused a dose-dependent decline in Neutral Red reading at all tested temperatures but Alamar Blue readings did not decline at 4 °C. Under these conditions, BEA appears to impair only lysosomal activity. Wound healing was reduced at 4, 10, and 26 °C compared to 18 °C. Also BEA treatment, at non-cytotoxic concentrations, reduced wound healing, but the temperature had little influence on this. Different carrier vehicles (methanol, DMSO) and exposure methods (passive or active dispersal) for BEA exposure were also studied. Here, methanol and passive dispersal gave comparable results to exposure with DMSO and active dispersal. In contrast, when DMSO was dosed with passive dispersal, immediate cytotoxicity in combination with BEA was induced.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-025-01014-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycotoxins in aquatic feeds and their effects on fish are becoming more important in aquaculture, as fishmeal and fish oil in feeds are being replaced with more sustainable plant protein. Here, we investigated the potential of the mycotoxin, beauvericin (BEA), to impact the rainbow trout (RT) intestine by using cultures of the epithelial cell line, RTgutGC. BEA was dosed in different ways and exposed at temperatures ranging from 4 to 26 °C before being evaluated for cell viability by the metabolic reduction of Alamar Blue, by the accumulation of Neutral Red (lysosomal activity), cytotoxicity (CellTox Green), and for wound healing. BEA induces cell death in RTgutGC cells. The lysosomes are the main target (Neutral Red assay is the most sensitive) while cytotoxicity and plasma membrane rupture (CellTox Green) occur at considerably higher concentrations. BEA caused a dose-dependent decline in Neutral Red reading at all tested temperatures but Alamar Blue readings did not decline at 4 °C. Under these conditions, BEA appears to impair only lysosomal activity. Wound healing was reduced at 4, 10, and 26 °C compared to 18 °C. Also BEA treatment, at non-cytotoxic concentrations, reduced wound healing, but the temperature had little influence on this. Different carrier vehicles (methanol, DMSO) and exposure methods (passive or active dispersal) for BEA exposure were also studied. Here, methanol and passive dispersal gave comparable results to exposure with DMSO and active dispersal. In contrast, when DMSO was dosed with passive dispersal, immediate cytotoxicity in combination with BEA was induced.

不同温度和给药方式下beauvericin对虹鳟鱼肠上皮细胞的影响。
水产饲料中的真菌毒素及其对鱼类的影响在水产养殖中变得越来越重要,因为饲料中的鱼粉和鱼油正在被更可持续的植物蛋白所取代。在这里,我们研究了真菌毒素beauvericin (BEA)对虹鳟鱼(RT)肠道的影响,通过培养虹鳟鱼(RT)上皮细胞系RTgutGC。BEA以不同的方式给药,并暴露在4至26°C的温度下,然后通过Alamar Blue的代谢减少、中性红(溶酶体活性)的积累、细胞毒性(CellTox Green)和伤口愈合来评估细胞活力。BEA诱导RTgutGC细胞死亡。溶酶体是主要靶标(中性红试验最敏感),而细胞毒性和质膜破裂(细胞毒素绿色)在相当高的浓度下发生。BEA在所有测试温度下引起中性红读数的剂量依赖性下降,但Alamar Blue读数在4°C时没有下降。在这些情况下,BEA似乎只损害溶酶体的活性。与18°C相比,4°C、10°C和26°C时伤口愈合减少。在无细胞毒性浓度的BEA处理下,伤口愈合也有所减少,但温度对伤口愈合的影响不大。研究了不同载体(甲醇、二甲基亚砜)和暴露方法(被动或主动扩散)对BEA暴露的影响。在这里,甲醇和被动分散与暴露于二甲基亚砜和主动分散的结果相当。相反,当DMSO以被动分散方式给药时,立即与BEA联合诱导细胞毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信