Limiting Hearing Loss in Transgenic Mouse Models.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2025-02-27 Print Date: 2025-02-01 DOI:10.1523/ENEURO.0465-24.2025
Travis A Babola, Naomi Donovan, Sean S Darcy, Catalina D Spjut, Patrick O Kanold
{"title":"Limiting Hearing Loss in Transgenic Mouse Models.","authors":"Travis A Babola, Naomi Donovan, Sean S Darcy, Catalina D Spjut, Patrick O Kanold","doi":"10.1523/ENEURO.0465-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Transgenic mice provide unprecedented access to manipulate and visualize neural circuits; however, those on a C57BL/6 background develop progressive hearing loss, significantly confounding systems-level and behavioral analysis. While outbreeding can limit hearing loss, it introduces strain variability and complicates the generation of complex genotypes. Here, we propose an approach to preserve hearing by crossing transgenic mice with congenic B6.CAST-<i>Cdh23<sup>Ahl</sup></i> <sup>+</sup> mice, which maintain low-threshold hearing into adulthood. Widefield and two-photon imaging of the auditory cortex revealed that 2.5-month-old C57BL/6 mice exhibit elevated thresholds to high-frequency tones and widespread cortical reorganization, with most neurons responding best to lower frequencies. In contrast, <i>Ahl+</i> C57BL/6 mice exhibited robust neural responses across tested frequencies and sound levels (4-64 kHz, 30-90 dB SPL) and retained low thresholds into adulthood. Our approach offers a cost-effective solution for generating complex genotypes and facilitates more interpretable systems neuroscience research by eliminating confounding effects from hearing loss.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0465-24.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Transgenic mice provide unprecedented access to manipulate and visualize neural circuits; however, those on a C57BL/6 background develop progressive hearing loss, significantly confounding systems-level and behavioral analysis. While outbreeding can limit hearing loss, it introduces strain variability and complicates the generation of complex genotypes. Here, we propose an approach to preserve hearing by crossing transgenic mice with congenic B6.CAST-Cdh23Ahl + mice, which maintain low-threshold hearing into adulthood. Widefield and two-photon imaging of the auditory cortex revealed that 2.5-month-old C57BL/6 mice exhibit elevated thresholds to high-frequency tones and widespread cortical reorganization, with most neurons responding best to lower frequencies. In contrast, Ahl+ C57BL/6 mice exhibited robust neural responses across tested frequencies and sound levels (4-64 kHz, 30-90 dB SPL) and retained low thresholds into adulthood. Our approach offers a cost-effective solution for generating complex genotypes and facilitates more interpretable systems neuroscience research by eliminating confounding effects from hearing loss.

求助全文
约1分钟内获得全文 求助全文
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信