Targeted antibacterial and anticancer therapeutics: PEGylated liposomal delivery of turmeric and cinnamon extracts-in vitro and in vivo efficacy.

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL
Sitah Alharthi, Amal Abdullah Alrashidi, Saud Almawash, Hasan Ebrahimi Shahmabadi, Seyed Ebrahim Alavi
{"title":"Targeted antibacterial and anticancer therapeutics: PEGylated liposomal delivery of turmeric and cinnamon extracts-<i>in vitro</i> and <i>in vivo</i> efficacy.","authors":"Sitah Alharthi, Amal Abdullah Alrashidi, Saud Almawash, Hasan Ebrahimi Shahmabadi, Seyed Ebrahim Alavi","doi":"10.1080/03639045.2025.2463395","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study presents the characterization and evaluation of polyethylene glycol (PEG)-coated liposomal formulations loaded with turmeric (TUR) and cinnamon (CINN) extracts for the treatment of bacterial infections.</p><p><strong>Significance: </strong>TUR/CINN-loaded PEGylated liposomes enhance the antibacterial effects of TUR and CINN both <i>in vitro</i> and <i>in vivo.</i></p><p><strong>Methods: </strong>PEGylated liposomes loaded with TUR and CINN were synthesized using the reverse-phase evaporation method and characterized by dynamic light scattering and spectrophotometry. The formulations were also evaluated for biocompatibility, permeability, and antibacterial efficacy in both <i>in vitro</i> and <i>in vivo</i> environments.</p><p><strong>Results: </strong>The nanoparticles, with dimensions ranging from 155 to 164 nm, exhibited consistent size distribution (polydispersity index (PDI) of 0.219 to 0.23), stable zeta potentials (-20 to -13 mV), and effective drug encapsulation rates (86.8% to 93.6%), suggesting their potential for targeted drug delivery. <i>In vitro</i> experiments demonstrated their biocompatibility (cell viability exceeding 75% at 40 µg/mL), permeability (transfer rates of 20.2% to 21.5%), antibacterial activity (minimum inhibitory concentrations of 8 to 64 µg/mL), and their ability to generate reactive oxygen species (1.2- to 2-fold increase compared to the control). In an <i>in vivo</i> murine model of <i>Pseudomonas aeruginosa</i> skin infections, significant reductions in viable bacterial counts were observed, with PEG-Lip-TUR/CINN leaving only 10<sup>2</sup> colony-forming units/mL. Additionally, this formulation displayed anti-metastatic properties, inhibiting cancer cell migration by 99%.</p><p><strong>Conclusions: </strong>This study highlights the potential of PEGylated liposomal formulations loaded with TUR and CINN as versatile therapeutic platforms for the treatment of antibiotic-resistant infections and cancer metastasis.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"231-243"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2025.2463395","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study presents the characterization and evaluation of polyethylene glycol (PEG)-coated liposomal formulations loaded with turmeric (TUR) and cinnamon (CINN) extracts for the treatment of bacterial infections.

Significance: TUR/CINN-loaded PEGylated liposomes enhance the antibacterial effects of TUR and CINN both in vitro and in vivo.

Methods: PEGylated liposomes loaded with TUR and CINN were synthesized using the reverse-phase evaporation method and characterized by dynamic light scattering and spectrophotometry. The formulations were also evaluated for biocompatibility, permeability, and antibacterial efficacy in both in vitro and in vivo environments.

Results: The nanoparticles, with dimensions ranging from 155 to 164 nm, exhibited consistent size distribution (polydispersity index (PDI) of 0.219 to 0.23), stable zeta potentials (-20 to -13 mV), and effective drug encapsulation rates (86.8% to 93.6%), suggesting their potential for targeted drug delivery. In vitro experiments demonstrated their biocompatibility (cell viability exceeding 75% at 40 µg/mL), permeability (transfer rates of 20.2% to 21.5%), antibacterial activity (minimum inhibitory concentrations of 8 to 64 µg/mL), and their ability to generate reactive oxygen species (1.2- to 2-fold increase compared to the control). In an in vivo murine model of Pseudomonas aeruginosa skin infections, significant reductions in viable bacterial counts were observed, with PEG-Lip-TUR/CINN leaving only 102 colony-forming units/mL. Additionally, this formulation displayed anti-metastatic properties, inhibiting cancer cell migration by 99%.

Conclusions: This study highlights the potential of PEGylated liposomal formulations loaded with TUR and CINN as versatile therapeutic platforms for the treatment of antibiotic-resistant infections and cancer metastasis.

靶向抗菌和抗癌治疗:聚乙二醇脂质体传递姜黄和肉桂提取物-体外和体内功效。
目的:研究聚乙二醇(PEG)包被的姜黄(TUR)和肉桂(CINN)提取物脂质体对细菌感染的治疗作用。意义:负载TUR/CINN的聚乙二醇脂质体增强了TUR和CINN的体外和体内抗菌作用。方法:采用反相蒸发法合成含TUR和CINN的聚乙二醇脂质体,并采用动态光散射和分光光度法对其进行表征。在体外和体内环境下,对制剂的生物相容性、渗透性和抗菌效果进行了评估。结果:纳米颗粒粒径范围为155 ~ 164 nm,粒径分布一致(PDI为0.219 ~ 0.23),zeta电位稳定(-20 ~ -13 mV),包封率为86.8% ~ 93.6%,具有靶向给药的潜力。体外实验证明了它们的生物相容性(40µg/mL时细胞存活率超过75%),渗透性(转移率为20.2%至21.5%),抗菌活性(最低抑制浓度为8至64µg/mL),以及它们产生活性氧的能力(与对照相比增加了1.2至2倍)。在铜绿假单胞菌皮肤感染的小鼠体内模型中,观察到活菌计数显著减少,PEG-Lip-TUR/CINN仅留下102个菌落形成单位/mL。此外,该配方显示抗转移特性,抑制癌细胞迁移99%。结论:本研究强调了装载TUR和CINN的聚乙二醇化脂质体制剂作为治疗抗生素耐药感染和癌症转移的多功能治疗平台的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信