Therapeutic Potential of Simvastatin: Cellular Mechanism, Binding Energetics, and Resistance Developments.

IF 2.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Shristy Verma, Rishabha Malviya, Sonali Sundaram, Saurabh Srivastava, Sathvik Belagodu Sridhar, Safia Obaidur Rab, Deependra Pratap Singh
{"title":"Therapeutic Potential of Simvastatin: Cellular Mechanism, Binding Energetics, and Resistance Developments.","authors":"Shristy Verma, Rishabha Malviya, Sonali Sundaram, Saurabh Srivastava, Sathvik Belagodu Sridhar, Safia Obaidur Rab, Deependra Pratap Singh","doi":"10.2174/0115680266327892241223052456","DOIUrl":null,"url":null,"abstract":"<p><p>Statins are a class of hypolipidemic agents that have been shown to promote osteogenic differentiation through enhanced alveolar bone recovery, inserted osseointegration, and cartilage regeneration. This review uses Molecular Docking (MD) simulations and additional Computer- Aided Drug Design (CADD) methods to present the state of the art in statin therapy. Furthermore, several studies have shown that factors such as limited overall absorption, metabolism in the first pass, and systemic side effects are among those that affect the oral administration of statins. In addition, these variables include susceptibility to efflux mechanisms, drug permeability, dissolution percentage, aqueous solubility, initial metabolism, and pre-systemic metabolism. Additionally examined are the pharmacokinetics of the statin and in vivo mechanisms of action. As a result of the numerous problems associated with the consumption of statins, including their low total bioavailability, first-pass metabolism, low aqueous solubility, and systemic adverse reactions, a non-oral mode of administration was looked into for this crucial and primary class of pharmacokinetic agents. However, to optimize bioavailability and minimize side effects, more research is required.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266327892241223052456","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Statins are a class of hypolipidemic agents that have been shown to promote osteogenic differentiation through enhanced alveolar bone recovery, inserted osseointegration, and cartilage regeneration. This review uses Molecular Docking (MD) simulations and additional Computer- Aided Drug Design (CADD) methods to present the state of the art in statin therapy. Furthermore, several studies have shown that factors such as limited overall absorption, metabolism in the first pass, and systemic side effects are among those that affect the oral administration of statins. In addition, these variables include susceptibility to efflux mechanisms, drug permeability, dissolution percentage, aqueous solubility, initial metabolism, and pre-systemic metabolism. Additionally examined are the pharmacokinetics of the statin and in vivo mechanisms of action. As a result of the numerous problems associated with the consumption of statins, including their low total bioavailability, first-pass metabolism, low aqueous solubility, and systemic adverse reactions, a non-oral mode of administration was looked into for this crucial and primary class of pharmacokinetic agents. However, to optimize bioavailability and minimize side effects, more research is required.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
2.90%
发文量
186
审稿时长
3-8 weeks
期刊介绍: Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信